14   Artículos

 
en línea
Youngki Park and Youhyun Shin    
In this paper, we introduce an efficient approach to multi-label image classification that is particularly suited for scenarios requiring rapid adaptation to new classes with minimal training data. Unlike conventional methods that rely solely on neural n... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Yizhou Tan, Wenjing Li, Da Chen and Waishan Qiu    
Understanding park events and their categorization offers pivotal insights into urban parks and their integral roles in cities. The objective of this study is to explore the efficacy of Convolutional Neural Networks (CNNs) in categorizing park events thr... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Zhuohao Zhou, Chunyue Lu, Wenchao Wang, Wenhao Dang and Ke Gong    
The training of deep neural networks usually requires a lot of high-quality data with good annotations to obtain good performance. However, in clinical medicine, obtaining high-quality marker data is laborious and expensive because it requires the profes... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Sergey A. Soldatov, Danil M. Pashkov, Sergey A. Guda, Nikolay S. Karnaukhov, Alexander A. Guda and Alexander V. Soldatov    
Microscopic tissue analysis is the key diagnostic method needed for disease identification and choosing the best treatment regimen. According to the Global Cancer Observatory, approximately two million people are diagnosed with colorectal cancer each yea... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Francisco Florez-Revuelta    
This paper presents a new evolutionary approach, EvoSplit, for the distribution of multi-label data sets into disjoint subsets for supervised machine learning. Currently, data set providers either divide a data set randomly or using iterative stratificat... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
He Yin, Keming Mao, Jianzhe Zhao, Huidong Chang, Dazhi E and Zhenhua Tan    
This study considered heated metal mark attribute recognition based on compressed convolutional neural networks (CNNs) models. Based on our previous works, the heated metal mark image benchmark dataset was further expanded. State-of-the-art lightweight C... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Chairath Sirirattanapol, Masahiko NAGAI, Apichon Witayangkurn, Surachet Pravinvongvuth and Mongkol Ekpanyapong    
Information regarding the conditions of roads is a safety concern when driving. In Bangkok, public weather sensors such as weather stations and rain sensors are insufficiently available to provide such information. On the other hand, a number of existing... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Xiangpeng Song, Hongbin Yang and Congcong Zhou    
Pedestrian attribute recognition is to predict a set of attribute labels of the pedestrian from surveillance scenarios, which is a very challenging task for computer vision due to poor image quality, continual appearance variations, as well as diverse sp... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Tie Hua Zhou, Ling Wang and Keun Ho Ryu    
The ever-increasing quantities of digital photo resources are annotated with enriching vocabularies to form semantic annotations. Photo-sharing social networks have boosted the need for efficient and intuitive querying to respond to user requirements in ... ver más
Revista: Sustainability    Formato: Electrónico

« Anterior     Página: 1 de 1     Siguiente »