Inicio  /  Algorithms  /  Vol: 15 Par: 11 (2022)  /  Artículo
ARTÍCULO
TITULO

Deep Learning Classification of Colorectal Lesions Based on Whole Slide Images

Sergey A. Soldatov    
Danil M. Pashkov    
Sergey A. Guda    
Nikolay S. Karnaukhov    
Alexander A. Guda and Alexander V. Soldatov    

Resumen

Microscopic tissue analysis is the key diagnostic method needed for disease identification and choosing the best treatment regimen. According to the Global Cancer Observatory, approximately two million people are diagnosed with colorectal cancer each year, and an accurate diagnosis requires a significant amount of time and a highly qualified pathologist to decrease the high mortality rate. Recent development of artificial intelligence technologies and scanning microscopy introduced digital pathology into the field of cancer diagnosis by means of the whole-slide image (WSI). In this work, we applied deep learning methods to diagnose six types of colon mucosal lesions using convolutional neural networks (CNNs). As a result, an algorithm for the automatic segmentation of WSIs of colon biopsies was developed, implementing pre-trained, deep convolutional neural networks of the ResNet and EfficientNet architectures. We compared the classical method and one-cycle policy for CNN training and applied both multi-class and multi-label approaches to solve the classification problem. The multi-label approach was superior because some WSI patches may belong to several classes at once or to none of them. Using the standard one-vs-rest approach, we trained multiple binary classifiers. They achieved the receiver operator curve AUC in the range of 0.80?0.96. Other metrics were also calculated, such as accuracy, precision, sensitivity, specificity, negative predictive value, and F1-score. Obtained CNNs can support human pathologists in the diagnostic process and can be extended to other cancers after adding a sufficient amount of labeled data.

 Artículos similares

       
 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Giorgio Lazzarinetti, Riccardo Dondi, Sara Manzoni and Italo Zoppis    
Solving combinatorial problems on complex networks represents a primary issue which, on a large scale, requires the use of heuristics and approximate algorithms. Recently, neural methods have been proposed in this context to find feasible solutions for r... ver más
Revista: Algorithms

 
Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, Francisco J. Ribadas-Pena and Néstor Bolaños    
In the context of academic expert finding, this paper investigates and compares the performance of information retrieval (IR) and machine learning (ML) methods, including deep learning, to approach the problem of identifying academic figures who are expe... ver más
Revista: Algorithms

 
Hamed Raoofi, Asa Sabahnia, Daniel Barbeau and Ali Motamedi    
Traditional methods of supervision in the construction industry are time-consuming and costly, requiring significant investments in skilled labor. However, with advancements in artificial intelligence, computer vision, and deep learning, these methods ca... ver más

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water