Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 11 (2022)  /  Artículo
ARTÍCULO
TITULO

Deep Learning Classification of Colorectal Lesions Based on Whole Slide Images

Sergey A. Soldatov    
Danil M. Pashkov    
Sergey A. Guda    
Nikolay S. Karnaukhov    
Alexander A. Guda and Alexander V. Soldatov    

Resumen

Microscopic tissue analysis is the key diagnostic method needed for disease identification and choosing the best treatment regimen. According to the Global Cancer Observatory, approximately two million people are diagnosed with colorectal cancer each year, and an accurate diagnosis requires a significant amount of time and a highly qualified pathologist to decrease the high mortality rate. Recent development of artificial intelligence technologies and scanning microscopy introduced digital pathology into the field of cancer diagnosis by means of the whole-slide image (WSI). In this work, we applied deep learning methods to diagnose six types of colon mucosal lesions using convolutional neural networks (CNNs). As a result, an algorithm for the automatic segmentation of WSIs of colon biopsies was developed, implementing pre-trained, deep convolutional neural networks of the ResNet and EfficientNet architectures. We compared the classical method and one-cycle policy for CNN training and applied both multi-class and multi-label approaches to solve the classification problem. The multi-label approach was superior because some WSI patches may belong to several classes at once or to none of them. Using the standard one-vs-rest approach, we trained multiple binary classifiers. They achieved the receiver operator curve AUC in the range of 0.80?0.96. Other metrics were also calculated, such as accuracy, precision, sensitivity, specificity, negative predictive value, and F1-score. Obtained CNNs can support human pathologists in the diagnostic process and can be extended to other cancers after adding a sufficient amount of labeled data.

 Artículos similares

       
 
Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, Francisco J. Ribadas-Pena and Néstor Bolaños    
In the context of academic expert finding, this paper investigates and compares the performance of information retrieval (IR) and machine learning (ML) methods, including deep learning, to approach the problem of identifying academic figures who are expe... ver más
Revista: Algorithms

 
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang    
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ... ver más
Revista: Applied Sciences

 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences

 
Shihao Ma, Jiao Wu, Zhijun Zhang and Yala Tong    
Addressing the limitations, including low automation, slow recognition speed, and limited universality, of current mudslide disaster detection techniques in remote sensing imagery, this study employs deep learning methods for enhanced mudslide disaster d... ver más
Revista: Applied Sciences

 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences