|
|
|
Lei Yang, Mengxue Xu and Yunan He
Convolutional Neural Networks (CNNs) have become essential in deep learning applications, especially in computer vision, yet their complex internal mechanisms pose significant challenges to interpretability, crucial for ethical applications. Addressing t...
ver más
|
|
|
|
|
|
|
Emre Ercan, Muhammed Serdar Avci, Mahmut Pekedis and Çaglayan Hizal
Structural health monitoring (SHM) plays a crucial role in extending the service life of engineering structures. Effective monitoring not only provides insights into the health and functionality of a structure but also serves as an early warning system f...
ver más
|
|
|
|
|
|
|
Chunchang Zhang and Ji Zeng
The real-time transmission of ship status data from vessels to shore is crucial for live status monitoring and guidance. Traditional reliance on expensive maritime satellite systems for this purpose is being reconsidered with the emergence of the global ...
ver más
|
|
|
|
|
|
|
Chenhong Yan, Shefeng Yan, Tianyi Yao, Yang Yu, Guang Pan, Lu Liu, Mou Wang and Jisheng Bai
Ship-radiated noise classification is critical in ocean acoustics. Recently, the feature extraction method combined with time?frequency spectrograms and convolutional neural networks (CNNs) has effectively described the differences between various underw...
ver más
|
|
|
|
|
|
|
Arturs Kempelis, Inese Polaka, Andrejs Romanovs and Antons Patlins
Urban agriculture presents unique challenges, particularly in the context of microclimate monitoring, which is increasingly important in food production. This paper explores the application of convolutional neural networks (CNNs) to forecast key sensor m...
ver más
|
|
|
|
|
|
|
Haiping Si, Mingchun Li, Weixia Li, Guipei Zhang, Ming Wang, Feitao Li and Yanling Li
Apples, as the fourth-largest globally produced fruit, play a crucial role in modern agriculture. However, accurately identifying apple diseases remains a significant challenge as failure in this regard leads to economic losses and poses threats to food ...
ver más
|
|
|
|
|
|
|
Sarfaraz Natha, Umme Laila, Ibrahim Ahmed Gashim, Khalid Mahboob, Muhammad Noman Saeed and Khaled Mohammed Noaman
Brain tumors (BT) represent a severe and potentially life-threatening cancer. Failing to promptly diagnose these tumors can significantly shorten a person?s life. Therefore, early and accurate detection of brain tumors is essential, allowing for appropri...
ver más
|
|
|
|
|
|
|
Tianhao Gao, Meng Zhang, Yifan Zhu, Youjian Zhang, Xiangsheng Pang, Jing Ying and Wenming Liu
Classifying sports videos is complex due to their dynamic nature. Traditional methods, like optical flow and the Histogram of Oriented Gradient (HOG), are limited by their need for expertise and lack of universality. Deep learning, particularly Convoluti...
ver más
|
|
|
|
|
|
|
Mingyoung Jeng, Alvir Nobel, Vinayak Jha, David Levy, Dylan Kneidel, Manu Chaudhary, Ishraq Islam, Evan Baumgartner, Eade Vanderhoof, Audrey Facer, Manish Singh, Abina Arshad and Esam El-Araby
Convolutional neural networks (CNNs) have proven to be a very efficient class of machine learning (ML) architectures for handling multidimensional data by maintaining data locality, especially in the field of computer vision. Data pooling, a major compon...
ver más
|
|
|
|
|
|
|
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ...
ver más
|
|
|
|