Resumen
The real-time transmission of ship status data from vessels to shore is crucial for live status monitoring and guidance. Traditional reliance on expensive maritime satellite systems for this purpose is being reconsidered with the emergence of the global short message communication service offered by the BeiDou-3 navigation satellite system. While this system presents a more cost-effective solution, its bandwidth is notably insufficient for handling real-time ship status data. This inadequacy necessitates the compression of such data. Therefore, this paper introduces an algorithm tailored for real-time compression of sequential ship status data. The algorithm is engineered to ensure both accuracy and the preservation of valid data range integrity. Our methodology integrates quantization, predictive coding employing an attention-averaging-based predictor, and arithmetic coding. This combined approach facilitates the transmission of succinct messages through the BeiDou Navigation System, enabling the live monitoring of ocean-going vessels. Experimental trials conducted with authentic data obtained from ship monitoring systems validate the efficiency of our approach. The achieved compression rates closely approximate theoretical minimum values. Consequently, this method exhibits substantial promise for the real-time transmission of parameters across various systems.