31   Artículos

 
en línea
Bowen Xing, Xiao Wang and Zhenchong Liu    
The path planning strategy of deep-sea mining vehicles is an important factor affecting the efficiency of deep-sea mining missions. However, the current traditional path planning algorithms suffer from hose entanglement problems and small coverage in the... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Hy Nguyen, Srikanth Thudumu, Hung Du, Kon Mouzakis and Rajesh Vasa    
Several approaches have applied Deep Reinforcement Learning (DRL) to Unmanned Aerial Vehicles (UAVs) to do autonomous object tracking. These methods, however, are resource intensive and require prior knowledge of the environment, making them difficult to... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Tongyang Xu, Yuan Liu, Zhaotai Ma, Yiqiang Huang and Peng Liu    
As a new distributed machine learning (ML) approach, federated learning (FL) shows great potential to preserve data privacy by enabling distributed data owners to collaboratively build a global model without sharing their raw data. However, the heterogen... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Alamir Labib Awad, Saleh Mesbah Elkaffas and Mohammed Waleed Fakhr    
Stock value prediction and trading, a captivating and complex research domain, continues to draw heightened attention. Ensuring profitable returns in stock market investments demands precise and timely decision-making. The evolution of technology has int... ver más
Revista: Applied System Innovation    Formato: Electrónico

 
en línea
Bowen Xing, Xiao Wang, Liu Yang, Zhenchong Liu and Qingyun Wu    
A deep reinforcement learning method to achieve complete coverage path planning for an unmanned surface vehicle (USV) is proposed. This paper firstly models the USV and the workspace required for complete coverage. Then, for the full-coverage path planni... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Junkai Yi and Xiaoyan Liu    
Penetration testing is an important method to evaluate the security degree of a network system. The importance of penetration testing attack path planning lies in its ability to simulate attacker behavior, identify vulnerabilities, reduce potential losse... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Wenhao Ma and Hongzhen Xu    
Cloud computing has experienced rapid growth in recent years and has become a critical computing paradigm. Combining multiple cloud services to satisfy complex user requirements has become a research hotspot in cloud computing. Service composition in mul... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Zeyang Wang, Jun Huang and Mingxu Yi    
Unmanned aerial helicopters (UAHs) have been widely used recently for reconnaissance operations and other risky missions. Meanwhile, the threats to UAHs have been becoming more and more serious, mainly from radar and flights. It is essential for a UAH to... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Shao Xuan Seah and Sutthiphong Srigrarom    
This paper explores the use of deep reinforcement learning in solving the multi-agent aircraft traffic planning (individual paths) and collision avoidance problem for a multiple UAS, such as that for a cargo drone network. Specifically, the Deep Q-Networ... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Pir Dino Soomro, Xianping Fu, Muhammad Aslam, Dani Elias Mfungo and Arsalan Ali    
An imperative application of artificial intelligence (AI) techniques is visual object detection, and the methods of visual object detection available currently need highly equipped datasets preserved in a centralized unit. This usually results in high tr... ver más
Revista: Applied Sciences    Formato: Electrónico

« Anterior     Página: 1 de 2     Siguiente »