Inicio  /  Applied Sciences  /  Vol: 13 Par: 24 (2023)  /  Artículo
ARTÍCULO
TITULO

Deep Q Network Based on a Fractional Political?Smart Flower Optimization Algorithm for Real-World Object Recognition in Federated Learning

Pir Dino Soomro    
Xianping Fu    
Muhammad Aslam    
Dani Elias Mfungo and Arsalan Ali    

Resumen

An imperative application of artificial intelligence (AI) techniques is visual object detection, and the methods of visual object detection available currently need highly equipped datasets preserved in a centralized unit. This usually results in high transmission and large storage overheads. Federated learning (FL) is an eminent machine learning technique to overcome such limitations, and this enables users to train a model together by processing the data in the local devices. In each round, each local device performs processing independently and updates the weights to the global model, which is the server. After that, the weights are aggregated and updated to the local model. In this research, an innovative framework is designed for real-world object recognition in FL using a proposed Deep Q Network (DQN) based on a Fractional Political?Smart Flower Optimization Algorithm (FP-SFOA). In the training model, object detection is performed by employing SegNet, and this classifier is effectively tuned based on the Political?Smart Flower Optimization Algorithm (PSFOA). Moreover, object recognition is performed based on the DQN, and the biases of the classifier are finely optimized based on the FP-SFOA, which is a hybridization of the Fractional Calculus (FC) concept with a Political Optimizer (PO) and a Smart Flower Optimization Algorithm (SFOA). Finally, the aggregation at the global model is accomplished using the Conditional Autoregressive Value at Risk by Regression Quantiles (CAViaRs) model. The designed FP-SFOA obtained a maximum accuracy of 0.950, minimum loss function of 0.104, minimum MSE of 0.122, minimum RMSE of 0.035, minimum FPR of 0.140, maximum average precision of 0.909, and minimum communication cost of 0.078. The proposed model obtained the highest accuracy of 0.950, which is a 14.11%, 6.42%, 7.37%, and 5.68% improvement compared to the existing methods.

 Artículos similares

       
 
Sungwon Moon, Seolwon Koo, Yujin Lim and Hyunjin Joo    
With recent technological advancements, the commercialization of autonomous vehicles (AVs) is expected to be realized soon. However, it is anticipated that a mixed traffic of AVs and human-driven vehicles (HVs) will persist for a considerable period unti... ver más
Revista: Applied Sciences

 
Xiaojiao Gu, Yang Tian, Chi Li, Yonghe Wei and Dashuai Li    
The fault diagnosis method proposed in this paper can be applied to the diagnosis of bearings in machine tool spindle systems.
Revista: Applied Sciences

 
Wei Zhuang, Zhiheng Li, Ying Wang, Qingyu Xi and Min Xia    
Predicting photovoltaic (PV) power generation is a crucial task in the field of clean energy. Achieving high-accuracy PV power prediction requires addressing two challenges in current deep learning methods: (1) In photovoltaic power generation prediction... ver más
Revista: Applied Sciences

 
JongBae Kim    
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro... ver más
Revista: Applied Sciences

 
Jin-Woo Kong, Byoung-Doo Oh, Chulho Kim and Yu-Seop Kim    
Intracerebral hemorrhage (ICH) is a severe cerebrovascular disorder that poses a life-threatening risk, necessitating swift diagnosis and treatment. While CT scans are the most effective diagnostic tool for detecting cerebral hemorrhage, their interpreta... ver más
Revista: Applied Sciences