35   Artículos

 
en línea
Zeyu Xu, Wenbin Yu, Chengjun Zhang and Yadang Chen    
In the era of noisy intermediate-scale quantum (NISQ) computing, the synergistic collaboration between quantum and classical computing models has emerged as a promising solution for tackling complex computational challenges. Long short-term memory (LSTM)... ver más
Revista: Information    Formato: Electrónico

 
en línea
Jae-Hyeon Park, Sung-Woo Park, Jong-Pil Kim and Hyun-Ung Oh    
A novel passive vibration-damping device is proposed and investigated for a large deployable solar array. One strategy for achieving high damping in a solar panel is using a yoke structure comprising a hyperelastic shape memory alloy and multiple viscous... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Hui Sheng, Min Liu, Jiyong Hu, Ping Li, Yali Peng and Yugen Yi    
Time-series data is an appealing study topic in data mining and has a broad range of applications. Many approaches have been employed to handle time series classification (TSC) challenges with promising results, among which deep neural network methods ha... ver más
Revista: Information    Formato: Electrónico

 
en línea
Lexin Zhang, Ruihan Wang, Zhuoyuan Li, Jiaxun Li, Yichen Ge, Shiyun Wa, Sirui Huang and Chunli Lv    
This research introduces a novel high-accuracy time-series forecasting method, namely the Time Neural Network (TNN), which is based on a kernel filter and time attention mechanism. Taking into account the complex characteristics of time-series data, such... ver más
Revista: Information    Formato: Electrónico

 
en línea
João Sequeira, Jorge Louçã, António M. Mendes and Pedro G. Lind    
We analyze the empirical series of malaria incidence, using the concepts of autocorrelation, Hurst exponent and Shannon entropy with the aim of uncovering hidden variables in those series. From the simulations of an agent model for malaria spreading, we ... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Chunlei Mi, Shifen Cheng and Feng Lu    
Predicting taxi-calling demands at the urban area level is vital to coordinate the supply?demand balance of the urban taxi system. Differing travel patterns, the impact of external data, and the expression of dynamic spatiotemporal demand dependence pose... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Tian Xu and Qingnian Zhang    
To analyze the changing characteristics of ship traffic flow in wind farms water area, and to improve the accuracy of ship traffic flow prediction, a Gated Recurrent Unit (GRU) of a Recurrent Neural Network (RNN) was established to analyze multiple traff... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Ziwen Gao, Zhiyi Li, Jiaying Luo and Xiaolin Li    
This paper describes the construction a short-text aspect-based sentiment analysis method based on Convolutional Neural Network (CNN) and Bidirectional Gating Recurrent Unit (BiGRU). The hybrid model can fully extract text features, solve the problem of ... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Jules Clément Mba, Sutene Mwambetania Mwambi and Edson Pindza    
Since its inception in 2009, Bitcoin has increasingly gained main stream attention from the general population to institutional investors. Several models, from GARCH type to jump-diffusion type, have been developed to dynamically capture the price moveme... ver más
Revista: Forecasting    Formato: Electrónico

 
en línea
Shun-Chieh Hsieh    
The need for accurate tourism demand forecasting is widely recognized. The unreliability of traditional methods makes tourism demand forecasting still challenging. Using deep learning approaches, this study aims to adapt Long Short-Term Memory (LSTM), Bi... ver más
Revista: Algorithms    Formato: Electrónico

« Anterior     Página: 1 de 2     Siguiente »