122   Artículos

 
en línea
Hui Deng, Wenjiang Zhang, Xiaoqian Zheng and Houxi Zhang    
The accurate and timely identification of crops holds paramount significance for effective crop management and yield estimation. Unmanned aerial vehicle (UAV), with their superior spatial and temporal resolution compared to satellite-based remote sensing... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Yujuan Cao, Jianguo Dai, Guoshun Zhang, Minghui Xia and Zhitan Jiang    
This paper combines feature selection with machine learning algorithms to achieve object-oriented classification of crops in Gaofen-6 remote sensing images. The study provides technical support and methodological references for research on regional monit... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Shuqi Jiang, Jiankui Yu, Shenglin Li, Junming Liu, Guang Yang, Guangshuai Wang, Jinglei Wang and Ni Song    
This research provides a comprehensive analysis of the spatiotemporal evolution of the regional cropping structure and its influencing factors. Using Landsat satellite images, field surveys, and yearbook data, we developed a planting structure extraction... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Ruiqing Chen, Liang Sun, Zhongxin Chen, Deji Wuyun and Zheng Sun    
The prompt and precise identification of corn and soybeans are essential for making informed decisions in agricultural production and ensuring food security. Nonetheless, conventional crop identification practices often occur after the completion of crop... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Ana Corceiro, Nuno Pereira, Khadijeh Alibabaei and Pedro D. Gaspar    
The global population?s rapid growth necessitates a 70% increase in agricultural production, posing challenges exacerbated by weed infestation and herbicide drawbacks. To address this, machine learning (ML) models, particularly convolutional neural netwo... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Zhichao Chen, Guoqiang Wang, Tao Lv and Xu Zhang    
Diseases of tomato leaves can seriously damage crop yield and financial rewards. The timely and accurate detection of tomato diseases is a major challenge in agriculture. Hence, the early and accurate diagnosis of tomato diseases is crucial. The emergenc... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Yunsong Jia, Qingxin Zhao, Yi Xiong, Xin Chen and Xiang Li    
The issues of inadequate digital proficiency among agricultural practitioners and the suboptimal image quality captured using mobile smart devices have been addressed by providing appropriate guidance to photographers to properly position their mobile de... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Pierre Schambri, Didier Kleiber and Cecile Levasseur-Garcia    
This study delves into the detection of the mycotoxin zearalenone (ZEA) in popcorn, aligning with the broader goal of ensuring food safety and security. Employing fast, non-destructive near-infrared spectroscopy, the research analyzes 88 samples collecte... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Che-Hao Chang, Jason Lin, Jia-Wei Chang, Yu-Shun Huang, Ming-Hsin Lai and Yen-Jen Chang    
Recently, data-driven approaches have become the dominant solution for prediction problems in agricultural industries. Several deep learning models have been applied to crop yield prediction in smart farming. In this paper, we proposed an efficient hybri... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Cunxiang Bian, Jinqiang Bai, Guanghe Cheng, Fengqi Hao and Xiyuan Zhao    
Field-road mode classification (FRMC) that identifies ?in-field? and ?on-road? categories for Global Navigation Satellite System (GNSS) trajectory points of agricultural machinery containing geographic information is essential for effective crop improvem... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

« Anterior     Página: 1 de 9     Siguiente »