Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Agriculture  /  Vol: 14 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Combinations of Feature Selection and Machine Learning Models for Object-Oriented ?Staple-Crop-Shifting? Monitoring Based on Gaofen-6 Imagery

Yujuan Cao    
Jianguo Dai    
Guoshun Zhang    
Minghui Xia and Zhitan Jiang    

Resumen

This paper combines feature selection with machine learning algorithms to achieve object-oriented classification of crops in Gaofen-6 remote sensing images. The study provides technical support and methodological references for research on regional monitoring of food crops and precision agriculture management. ?Staple-food-shifting? refers to the planting of other cash crops on cultivated land that should have been planted with staple crops such as wheat, rice, and maize, resulting in a change in the type of arable land cultivated. An accurate grasp of the spatial and temporal patterns of ?staple-food-shifting? on arable land is an important basis for rationalizing land use and protecting food security. In this study, the Shihezi Reclamation Area in Xinjiang is selected as the study area, and Gaofen-6 satellite images are used to study the changes in the cultivated area of staple food crops and their regional distribution. Firstly, the images are segmented at multiple scales and four types of features are extracted, totaling sixty-five feature variables. Secondly, six feature selection algorithms are used to optimize the feature variables, and a total of nine feature combinations are designed. Finally, k-Nearest Neighbor (KNN), Random Forest (RF), and Decision Tree (DT) are used as the basic models of image classification to explore the best combination of feature selection method and machine learning model suitable for wheat, maize, and cotton classification. The results show that our proposed optimal feature selection method (OFSM) can significantly improve the classification accuracy by up to 15.02% compared to the Random Forest Feature Importance Selection (RF-FI), Random Forest Recursive Feature Elimination (RF-RFE), and XGBoost Feature Importance Selection (XGBoost-FI) methods. Among them, the OF-RF-RFE model constructed based on KNN performs the best, with the overall accuracy, average user accuracy, average producer accuracy, and kappa coefficient reaching 90.68%, 87.86%, 86.68%, and 0.84, respectively.

 Artículos similares

       
 
Wenfeng Li, Jiao Pan, Wenyi Peng, Yingzhi Li and Chao Li    
Garlic (Allium sativum) is an important economic crop in China. In terms of using remote sensing technology to identify it, there is still room for improvement, and the high-precision classification of garlic has become an important issue. However, to th... ver más
Revista: Agronomy

 
Yaoqiang Pan, Xvlin Xiao, Kewei Hu, Hanwen Kang, Yangwen Jin, Yan Chen and Xiangjun Zou    
In an unmanned orchard, various tasks such as seeding, irrigation, health monitoring, and harvesting of crops are carried out by unmanned vehicles. These vehicles need to be able to distinguish which objects are fruit trees and which are not, rather than... ver más
Revista: Agronomy

 
Guoqing Feng, Cheng Wang, Aichen Wang, Yuanyuan Gao, Yanan Zhou, Shuo Huang and Bin Luo    
Crop lodging is an important cause of direct economic losses and secondary disease transmission in agricultural production. Most existing methods for segmenting wheat lodging areas use a large-volume network, which poses great difficulties for annotation... ver más
Revista: Agriculture

 
Wenji Yang and Xiaoying Qiu    
The damage caused by pests to crops results in reduced crop yield and compromised quality. Accurate and timely pest detection plays a crucial role in helping farmers to defend against and control pests. In this paper, a novel crop pest detection model na... ver más
Revista: Agriculture

 
Jinnan Hu, Guo Li, Haolan Mo, Yibo Lv, Tingting Qian, Ming Chen and Shenglian Lu    
The extraction and analysis of plant phenotypic characteristics are critical issues for many precision agriculture applications. An improved YOLOv5 model was proposed in this study for accurate node detection and internode length estimation of crops by u... ver más
Revista: Agriculture