|
|
|
Xuejun Yue, Haifeng Li, Qingkui Song, Fanguo Zeng, Jianyu Zheng, Ziyu Ding, Gaobi Kang, Yulin Cai, Yongda Lin, Xiaowan Xu and Chaoran Yu
Existing disease detection models for deep learning-based monitoring and prevention of pepper diseases face challenges in accurately identifying and preventing diseases due to inter-crop occlusion and various complex backgrounds. To address this issue, w...
ver más
|
|
|
|
|
|
|
Zhendong He, Wenbin Yang, Yanjie Liu, Anping Zheng, Jie Liu, Taishan Lou and Jie Zhang
Ensuring the safety of transmission lines necessitates effective insulator defect detection. Traditional methods often need more efficiency and accuracy, particularly for tiny defects. This paper proposes an innovative insulator defect recognition method...
ver más
|
|
|
|
|
|
|
Zongshun Wang, Ce Li, Jialin Ma, Zhiqiang Feng and Limei Xiao
In this study, we introduce a novel framework for the semantic segmentation of point clouds in autonomous driving scenarios, termed PVI-Net. This framework uniquely integrates three different data perspectives?point clouds, voxels, and distance maps?exec...
ver más
|
|
|
|
|
|
|
Zhe Yin, Mingkang Peng, Zhaodong Guo, Yue Zhao, Yaoyu Li, Wuping Zhang, Fuzhong Li and Xiaohong Guo
With the advancement of machine vision technology, pig face recognition has garnered significant attention as a key component in the establishment of precision breeding models. In order to explore non-contact individual pig recognition, this study propos...
ver más
|
|
|
|
|
|
|
Ye Xiao, Yupeng Hu, Jizhao Liu, Yi Xiao and Qianzhen Liu
Ship trajectory prediction is essential for ensuring safe route planning and to have advanced warning of the dangers at sea. With the development of deep learning, most of the current research has explored advanced prediction methods based on historical ...
ver más
|
|
|
|
|
|
|
Wei Zhuang, Zhiheng Li, Ying Wang, Qingyu Xi and Min Xia
Predicting photovoltaic (PV) power generation is a crucial task in the field of clean energy. Achieving high-accuracy PV power prediction requires addressing two challenges in current deep learning methods: (1) In photovoltaic power generation prediction...
ver más
|
|
|
|
|
|
|
Lianlian He, Hao Li and Rui Zhang
Recent advances in knowledge graphs show great promise to link various data together to provide a semantic network. Place is an important part in the big picture of the knowledge graph since it serves as a powerful glue to link any data to its georeferen...
ver más
|
|
|
|
|
|
|
Jiajia Peng and Tianbing Tang
Image captioning, also recognized as the challenge of transforming visual data into coherent natural language descriptions, has persisted as a complex problem. Traditional approaches often suffer from semantic gaps, wherein the generated textual descript...
ver más
|
|
|
|
|
|
|
Yimin Ma, Yi Xu, Yunqing Liu, Fei Yan, Qiong Zhang, Qi Li and Quanyang Liu
In recent years, deep convolutional neural networks with multi-scale features have been widely used in image super-resolution reconstruction (ISR), and the quality of the generated images has been significantly improved compared with traditional methods....
ver más
|
|
|
|
|
|
|
Bo Zhao, Qifan Zhang, Yangchun Liu, Yongzhi Cui and Baixue Zhou
In response to the need for precision and intelligence in the assessment of transplanting machine operation quality, this study addresses challenges such as low accuracy and efficiency associated with manual observation and random field sampling for the ...
ver más
|
|
|
|