Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Agronomy  /  Vol: 14 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

YOLOv7-GCA: A Lightweight and High-Performance Model for Pepper Disease Detection

Xuejun Yue    
Haifeng Li    
Qingkui Song    
Fanguo Zeng    
Jianyu Zheng    
Ziyu Ding    
Gaobi Kang    
Yulin Cai    
Yongda Lin    
Xiaowan Xu and Chaoran Yu    

Resumen

Existing disease detection models for deep learning-based monitoring and prevention of pepper diseases face challenges in accurately identifying and preventing diseases due to inter-crop occlusion and various complex backgrounds. To address this issue, we propose a modified YOLOv7-GCA model based on YOLOv7 for pepper disease detection, which can effectively overcome these challenges. The model introduces three key enhancements: Firstly, lightweight GhostNetV2 is used as the feature extraction network of the model to improve the detection speed. Secondly, the Cascading fusion network (CFNet) replaces the original feature fusion network, which improves the expression ability of the model in complex backgrounds and realizes multi-scale feature extraction and fusion. Finally, the Convolutional Block Attention Module (CBAM) is introduced to focus on the important features in the images and improve the accuracy and robustness of the model. This study uses the collected dataset, which was processed to construct a dataset of 1259 images with four types of pepper diseases: anthracnose, bacterial diseases, umbilical rot, and viral diseases. We applied data augmentation to the collected dataset, and then experimental verification was carried out on this dataset. The experimental results demonstrate that the YOLOv7-GCA model reduces the parameter count by 34.3% compared to the YOLOv7 original model while improving 13.4% in mAP and 124 frames/s in detection speed. Additionally, the model size was reduced from 74.8 MB to 46.9 MB, which facilitates the deployment of the model on mobile devices. When compared to the other seven mainstream detection models, it was indicated that the YOLOv7-GCA model achieved a balance between speed, model size, and accuracy. This model proves to be a high-performance and lightweight pepper disease detection solution that can provide accurate and timely diagnosis results for farmers and researchers.

 Artículos similares

       
 
Hailiang Gong, Xi Wang and Weidong Zhuang    
This study focuses on real-time detection of maize crop rows using deep learning technology to meet the needs of autonomous navigation for weed removal during the maize seedling stage. Crop row recognition is affected by natural factors such as soil expo... ver más
Revista: Agriculture

 
Qing Dong, Lina Sun, Tianxin Han, Minqi Cai and Ce Gao    
Timely and effective pest detection is essential for agricultural production, facing challenges such as complex backgrounds and a vast number of parameters. Seeking solutions has become a pressing matter. This paper, based on the YOLOv5 algorithm, develo... ver más
Revista: Agriculture

 
Lexin Zhang, Kuiheng Chen, Liping Zheng, Xuwei Liao, Feiyu Lu, Yilun Li, Yuzhuo Cui, Yaze Wu, Yihong Song and Shuo Yan    
This study introduces a novel high-accuracy fruit fly detection model based on the Transformer structure, specifically aimed at addressing the unique challenges in fruit fly detection such as identification of small targets and accurate localization agai... ver más
Revista: Agriculture

 
Bin Li, Huazhong Lu, Xinyu Wei, Shixuan Guan, Zhenyu Zhang, Xingxing Zhou and Yizhi Luo    
Accurate litchi identification is of great significance for orchard yield estimations. Litchi in natural scenes have large differences in scale and are occluded by leaves, reducing the accuracy of litchi detection models. Adopting traditional horizontal ... ver más
Revista: Agronomy

 
Xingdong Sun, Yukai Zheng, Delin Wu and Yuhang Sui    
The key technology of automated apple harvesting is detecting apples quickly and accurately. The traditional detection methods of apple detection are often slow and inaccurate in unstructured orchards. Therefore, this article proposes an improved YOLOv5s... ver más
Revista: Agronomy