|
|
|
Xinyi Meng and Daofeng Li
The explosive growth of malware targeting Android devices has resulted in the demand for the acquisition and integration of comprehensive information to enable effective, robust, and user-friendly malware detection. In response to this challenge, this pa...
ver más
|
|
|
|
|
|
|
Zengyu Cai, Chunchen Tan, Jianwei Zhang, Liang Zhu and Yuan Feng
As network technology continues to develop, the popularity of various intelligent terminals has accelerated, leading to a rapid growth in the scale of wireless network traffic. This growth has resulted in significant pressure on resource consumption and ...
ver más
|
|
|
|
|
|
|
Sorin Zoican, Roxana Zoican, Dan Galatchi and Marius Vochin
This paper illustrates a general framework in which a neural network application can be easily integrated and proposes a traffic forecasting approach that uses neural networks based on graphs. Neural networks based on graphs have the advantage of capturi...
ver más
|
|
|
|
|
|
|
Binita Kusum Dhamala, Babu R. Dawadi, Pietro Manzoni and Baikuntha Kumar Acharya
Graph representation is recognized as an efficient method for modeling networks, precisely illustrating intricate, dynamic interactions within various entities of networks by representing entities as nodes and their relationships as edges. Leveraging the...
ver más
|
|
|
|
|
|
|
Dibo Dong, Shangwei Wang, Qiaoying Guo, Yiting Ding, Xing Li and Zicheng You
Predicting wind speed over the ocean is difficult due to the unequal distribution of buoy stations and the occasional fluctuations in the wind field. This study proposes a dynamic graph embedding-based graph neural network?long short-term memory joint fr...
ver más
|
|
|
|
|
|
|
Jiahui Zhao, Zhibin Li, Pan Liu, Mingye Zhang
Pág. 115 - 142
Demand prediction plays a critical role in traffic research. The key challenge of traffic demand prediction lies in modeling the complex spatial dependencies and temporal dynamics. However, there is no mature and widely accepted concept to support the so...
ver más
|
|
|
|
|
|
|
Xin Tian and Yuan Meng
Multi-relational graph neural networks (GNNs) have found widespread application in tasks involving enhancing knowledge representation and knowledge graph (KG) reasoning. However, existing multi-relational GNNs still face limitations in modeling the excha...
ver más
|
|
|
|
|
|
|
Wen Tian, Yining Zhang, Ying Zhang, Haiyan Chen and Weidong Liu
To fully leverage the spatiotemporal dynamic correlations in air traffic flow and enhance the accuracy of traffic flow prediction models, thereby providing a more precise basis for perceiving congestion situations in the air route network, a study was co...
ver más
|
|
|
|
|
|
|
Md Easin Hasan and Amy Wagler
Neuroimaging experts in biotech industries can benefit from using cutting-edge artificial intelligence techniques for Alzheimer?s disease (AD)- and dementia-stage prediction, even though it is difficult to anticipate the precise stage of dementia and AD....
ver más
|
|
|
|
|
|
|
Jun Li, Chenyang Zhang, Jianyi Zhang and Yanhua Shao
To address the challenge of balancing privacy protection with regulatory oversight in blockchain transactions, we propose a regulatable privacy protection scheme for blockchain transactions. Our scheme utilizes probabilistic public-key encryption to obsc...
ver más
|
|
|
|