Inicio  /  Applied Sciences  /  Vol: 14 Par: 5 (2024)  /  Artículo
ARTÍCULO
TITULO

DBSTGNN-Att: Dual Branch Spatio-Temporal Graph Neural Network with an Attention Mechanism for Cellular Network Traffic Prediction

Zengyu Cai    
Chunchen Tan    
Jianwei Zhang    
Liang Zhu and Yuan Feng    

Resumen

As network technology continues to develop, the popularity of various intelligent terminals has accelerated, leading to a rapid growth in the scale of wireless network traffic. This growth has resulted in significant pressure on resource consumption and network security maintenance. The objective of this paper is to enhance the prediction accuracy of cellular network traffic in order to provide reliable support for the subsequent base station sleep control or the identification of malicious traffic. To achieve this target, a cellular network traffic prediction method based on multi-modal data feature fusion is proposed. Firstly, an attributed K-nearest node (KNN) graph is constructed based on the similarity of data features, and the fused high-dimensional features are incorporated into the graph to provide more information for the model. Subsequently, a dual branch spatio-temporal graph neural network with an attention mechanism (DBSTGNN-Att) is designed for cellular network traffic prediction. Extensive experiments conducted on real-world datasets demonstrate that the proposed method outperforms baseline models, such as temporal graph convolutional networks (T-GCNs) and spatial?temporal self-attention graph convolutional networks (STA-GCNs) with lower mean absolute error (MAE) values of 6.94% and 2.11%, respectively. Additionally, the ablation experimental results show that the MAE of multi-modal feature fusion using the attributed KNN graph is 8.54% lower compared to that of the traditional undirected graphs.

 Artículos similares

       
 
Muhammad Sheraz, Teong Chee Chuah, Mardeni Bin Roslee, Manzoor Ahmed, Amjad Iqbal and Ala?a Al-Habashna    
Data caching is a promising technique to alleviate the data traffic burden from the backhaul and minimize data access delay. However, the cache capacity constraint poses a significant challenge to obtaining content through the cache resource that degrade... ver más
Revista: Applied Sciences

 
Pengfei Zhao and Ze Liu    
The three-dimensional (3D) reconstruction of Electromagnetic Tomography (EMT) is an important task for many applications, such as the non-destructive testing of inner defects in rail systems. Additionally, image reconstruction algorithms utilizing deep l... ver más
Revista: Applied Sciences

 
Longde Wang, Hui Cao, Zhichao Cui and Zeren Ai    
Marine engines confront challenges of varying working conditions and intricate failures. Existing studies have primarily concentrated on fault diagnosis in a single condition, overlooking the adaptability of these methods in diverse working condition. To... ver más

 
Ruoyang Li, Shuping Xiong, Yinchao Che, Lei Shi, Xinming Ma and Lei Xi    
Semantic segmentation algorithms leveraging deep convolutional neural networks often encounter challenges due to their extensive parameters, high computational complexity, and slow execution. To address these issues, we introduce a semantic segmentation ... ver más
Revista: Algorithms

 
Xiaoping Huang, Yujian Zhou and Yajun Du    
In recent years, there has been rapid development in machine learning for solving artificial intelligence tasks in various fields, including translation, speech, and image processing. These AI tasks are often interconnected rather than independent. One s... ver más
Revista: Applied Sciences