|
|
|
Yunsong Jia, Qingxin Zhao, Yi Xiong, Xin Chen and Xiang Li
The issues of inadequate digital proficiency among agricultural practitioners and the suboptimal image quality captured using mobile smart devices have been addressed by providing appropriate guidance to photographers to properly position their mobile de...
ver más
|
|
|
|
|
|
|
Feng Zhou, Shijing Hu, Xin Du, Xiaoli Wan and Jie Wu
In the current field of disease risk prediction research, there are many methods of using servers for centralized computing to train and infer prediction models. However, this centralized computing method increases storage space, the load on network band...
ver más
|
|
|
|
|
|
|
Zhe Yin, Mingkang Peng, Zhaodong Guo, Yue Zhao, Yaoyu Li, Wuping Zhang, Fuzhong Li and Xiaohong Guo
With the advancement of machine vision technology, pig face recognition has garnered significant attention as a key component in the establishment of precision breeding models. In order to explore non-contact individual pig recognition, this study propos...
ver más
|
|
|
|
|
|
|
Jiaming Bian, Ye Liu and Jun Chen
In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network?s performance ...
ver más
|
|
|
|
|
|
|
Qing Dong, Lina Sun, Tianxin Han, Minqi Cai and Ce Gao
Timely and effective pest detection is essential for agricultural production, facing challenges such as complex backgrounds and a vast number of parameters. Seeking solutions has become a pressing matter. This paper, based on the YOLOv5 algorithm, develo...
ver más
|
|
|
|
|
|
|
Rujia Li, Yadong Li, Weibo Qin, Arzlan Abbas, Shuang Li, Rongbiao Ji, Yehui Wu, Yiting He and Jianping Yang
This research tackles the intricate challenges of detecting densely distributed maize leaf diseases and the constraints inherent in YOLO-based detection algorithms. It introduces the GhostNet_Triplet_YOLOv8s algorithm, enhancing YOLO v8s by integrating t...
ver más
|
|
|
|
|
|
|
Jianian Li, Zhengquan Liu and Dejin Wang
The precise detection of diseases is crucial for the effective treatment of pear trees and to improve their fruit yield and quality. Currently, recognizing plant diseases in complex backgrounds remains a significant challenge. Therefore, a lightweight CC...
ver más
|
|
|
|
|
|
|
Zhikai Jiang, Li Su and Yuxin Sun
Accurate ship object detection ensures navigation safety and effective maritime traffic management. Existing ship target detection models often have the problem of missed detection in complex marine environments, and it is hard to achieve high accuracy a...
ver más
|
|
|
|
|
|
|
Xuejun Yue, Haifeng Li, Qingkui Song, Fanguo Zeng, Jianyu Zheng, Ziyu Ding, Gaobi Kang, Yulin Cai, Yongda Lin, Xiaowan Xu and Chaoran Yu
Existing disease detection models for deep learning-based monitoring and prevention of pepper diseases face challenges in accurately identifying and preventing diseases due to inter-crop occlusion and various complex backgrounds. To address this issue, w...
ver más
|
|
|
|
|
|
|
Yuntao Shi, Qi Luo, Meng Zhou, Wei Guo, Jie Li, Shuqin Li and Yu Ding
Objects thrown from tall buildings in communities are characterized by their small size, inconspicuous features, and high speed. Existing algorithms for detecting such objects face challenges, including excessive parameters, overly complex models that ar...
ver más
|
|
|
|