|
|
|
Xinyi Meng and Daofeng Li
The explosive growth of malware targeting Android devices has resulted in the demand for the acquisition and integration of comprehensive information to enable effective, robust, and user-friendly malware detection. In response to this challenge, this pa...
ver más
|
|
|
|
|
|
|
Zengyu Cai, Chunchen Tan, Jianwei Zhang, Liang Zhu and Yuan Feng
As network technology continues to develop, the popularity of various intelligent terminals has accelerated, leading to a rapid growth in the scale of wireless network traffic. This growth has resulted in significant pressure on resource consumption and ...
ver más
|
|
|
|
|
|
|
Wei Zhuang, Zhiheng Li, Ying Wang, Qingyu Xi and Min Xia
Predicting photovoltaic (PV) power generation is a crucial task in the field of clean energy. Achieving high-accuracy PV power prediction requires addressing two challenges in current deep learning methods: (1) In photovoltaic power generation prediction...
ver más
|
|
|
|
|
|
|
Yuyan Zheng, Jianhua Qu and Jiajia Yang
Similarity measures in heterogeneous information networks (HINs) have become increasingly important in recent years. Most measures in such networks are based on the meta path, a relation sequence connecting object types. However, in real-world scenarios,...
ver más
|
|
|
|
|
|
|
Sorin Zoican, Roxana Zoican, Dan Galatchi and Marius Vochin
This paper illustrates a general framework in which a neural network application can be easily integrated and proposes a traffic forecasting approach that uses neural networks based on graphs. Neural networks based on graphs have the advantage of capturi...
ver más
|
|
|
|
|
|
|
Ali Dorosti, Ali Asghar Alesheikh and Mohammad Sharif
Advancements in navigation and tracking technologies have resulted in a significant increase in movement data within road networks. Analyzing the trajectories of network-constrained moving objects makes a profound contribution to transportation and urban...
ver más
|
|
|
|
|
|
|
Binita Kusum Dhamala, Babu R. Dawadi, Pietro Manzoni and Baikuntha Kumar Acharya
Graph representation is recognized as an efficient method for modeling networks, precisely illustrating intricate, dynamic interactions within various entities of networks by representing entities as nodes and their relationships as edges. Leveraging the...
ver más
|
|
|
|
|
|
|
Haiqiang Yang and Zihan Li
The objective imbalance between the taxi supply and demand exists in various areas of the city. Accurately predicting this imbalance helps taxi companies with dispatching, thereby increasing their profits and meeting the travel needs of residents. The ap...
ver más
|
|
|
|
|
|
|
Dibo Dong, Shangwei Wang, Qiaoying Guo, Yiting Ding, Xing Li and Zicheng You
Predicting wind speed over the ocean is difficult due to the unequal distribution of buoy stations and the occasional fluctuations in the wind field. This study proposes a dynamic graph embedding-based graph neural network?long short-term memory joint fr...
ver más
|
|
|
|
|
|
|
Wen Tian, Yining Zhang, Ying Zhang, Haiyan Chen and Weidong Liu
To fully leverage the spatiotemporal dynamic correlations in air traffic flow and enhance the accuracy of traffic flow prediction models, thereby providing a more precise basis for perceiving congestion situations in the air route network, a study was co...
ver más
|
|
|
|