|
|
|
Sergio Jesús González-Ambriz, Rolando Menchaca-Méndez, Sergio Alejandro Pinacho-Castellanos and Mario Eduardo Rivero-Ángeles
This paper presents the spectral gap-based topology control algorithm (SGTC) for wireless backhaul networks, a novel approach that employs the Laplacian Spectral Gap (LSG) to find expander-like graphs that optimize the topology of the network in terms of...
ver más
|
|
|
|
|
|
|
Diya Wang, Yonglin Zhang, Lixin Wu, Yupeng Tai, Haibin Wang, Jun Wang, Fabrice Meriaudeau and Fan Yang
In recent years, the study of deep learning techniques for underwater acoustic channel estimation has gained widespread attention. However, existing neural network channel estimation methods often overfit to training dataset noise levels, leading to dimi...
ver más
|
|
|
|
|
|
|
Zhenyu Yin, Feiqing Zhang, Guangyuan Xu, Guangjie Han and Yuanguo Bi
Confronting the challenge of identifying unknown fault types in rolling bearing fault diagnosis, this study introduces a multi-scale bearing fault diagnosis method based on transfer learning. Initially, a multi-scale feature extraction network, MBDCNet, ...
ver más
|
|
|
|
|
|
|
Chenglin Yang, Dongliang Xu and Xiao Ma
Due to the increasing severity of network security issues, training corresponding detection models requires large datasets. In this work, we propose a novel method based on generative adversarial networks to synthesize network data traffic. We introduced...
ver más
|
|
|
|
|
|
|
Christogonus U. Onukwube, Daniel O. Aikhuele and Shahryar Sorooshian
Water distribution networks are complex systems that aid in the delivery of water to residential and non-residential areas. However, the networks can be affected by different types of faults, which could lead to the wastage of treated water. As such, the...
ver más
|
|
|
|
|
|
|
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an...
ver más
|
|
|
|
|
|
|
Rong Wang, Xinyang Zhou, Yi Liu, Dongqi Liu, Yu Lu and Miao Su
To ensure the safety and durability of concrete structures, timely detection and classification of concrete cracks using a low-cost and high-efficiency method is necessary. In this study, a concrete surface crack damage detection method based on the ResN...
ver más
|
|
|
|
|
|
|
Mojtaba Nayyeri, Modjtaba Rouhani, Hadi Sadoghi Yazdi, Marko M. Mäkelä, Alaleh Maskooki and Yury Nikulin
One of the main disadvantages of the traditional mean square error (MSE)-based constructive networks is their poor performance in the presence of non-Gaussian noises. In this paper, we propose a new incremental constructive network based on the correntro...
ver más
|
|
|
|
|
|
|
Xingdong Sun, Yukai Zheng, Delin Wu and Yuhang Sui
The key technology of automated apple harvesting is detecting apples quickly and accurately. The traditional detection methods of apple detection are often slow and inaccurate in unstructured orchards. Therefore, this article proposes an improved YOLOv5s...
ver más
|
|
|
|
|
|
|
Xuejun Yue, Haifeng Li, Qingkui Song, Fanguo Zeng, Jianyu Zheng, Ziyu Ding, Gaobi Kang, Yulin Cai, Yongda Lin, Xiaowan Xu and Chaoran Yu
Existing disease detection models for deep learning-based monitoring and prevention of pepper diseases face challenges in accurately identifying and preventing diseases due to inter-crop occlusion and various complex backgrounds. To address this issue, w...
ver más
|
|
|
|