Resumen
Cereal crops with inhibition expression of starch branching enzyme (SBE) contain highly resistant starch in the endosperm, and have potential health benefits for human. However, seed plumpness is significantly different, with different inhibition effects of SBE expression, resulting in differently shrunken seeds. In this study, a transgenic resistant starch rice line, which has highly resistant starch and is developed through inhibition expression of SBEs, had non-, slightly, and moderately shrunken seeds with plumpness from high to low. The differently shrunken seeds had significantly different seed weight and starch content. Different morphological starch granules were detected in the endosperm and had similar spatial distribution pattern among the non-, slightly, and moderately shrunken seeds. Starches from differently shrunken seeds had similar amylose content and amylopectin structure. The protein amount of amylose/amylopectin synthesis key enzymes in endosperm was no different between differently shrunken seeds. The primary branch of the panicle had a higher percentage of non-shrunken seeds than did the secondary branch at the same part of the panicle. From the upper part to the base of the panicle, non-shrunken seeds gradually decreased but slightly and moderately shrunken seeds gradually increased. The above results indicated that the differently shrunken seeds in transgenic rice line had the same SBE dosage, and the starch morphology and structure had no relationship with seed plumpness. The grain position on the panicle influenced seed plumpness, but had no effect on starch properties.