Inicio  /  Aerospace  /  Vol: 7 Par: 9 (2020)  /  Artículo
ARTÍCULO
TITULO

Deep Neural Network Feature Selection Approaches for Data-Driven Prognostic Model of Aircraft Engines

Phattara Khumprom    
David Grewell and Nita Yodo    

Resumen

Predicting Remaining Useful Life (RUL) of systems has played an important role in various fields of reliability engineering analysis, including in aircraft engines. RUL prediction is critically an important part of Prognostics and Health Management (PHM), which is the reliability science that is aimed at increasing the reliability of the system and, in turn, reducing the maintenance cost. The majority of the PHM models proposed during the past few years have shown a significant increase in the amount of data-driven deployments. While more complex data-driven models are often associated with higher accuracy, there is a corresponding need to reduce model complexity. One possible way to reduce the complexity of the model is to use the features (attributes or variables) selection and dimensionality reduction methods prior to the model training process. In this work, the effectiveness of multiple filter and wrapper feature selection methods (correlation analysis, relief forward/backward selection, and others), along with Principal Component Analysis (PCA) as a dimensionality reduction method, was investigated. A basis algorithm of deep learning, Feedforward Artificial Neural Network (FFNN), was used as a benchmark modeling algorithm. All those approaches can also be applied to the prognostics of an aircraft gas turbine engines. In this paper, the aircraft gas turbine engines data from NASA Ames prognostics data repository was used to test the effectiveness of the filter and wrapper feature selection methods not only for the vanilla FFNN model but also for Deep Neural Network (DNN) model. The findings show that applying feature selection methods helps to improve overall model accuracy and significantly reduced the complexity of the models.

 Artículos similares

       
 
Jingyi Hu, Junfeng Guo, Zhiyuan Rui and Zhiming Wang    
To solve the problem that noise seriously affects the online monitoring of parts signals of outdoor machinery, this paper proposes a signal reconstruction method integrating deep neural network and compression sensing, called ADMM-1DNet, and gives a deta... ver más
Revista: Applied Sciences

 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences

 
Xiaojiao Gu, Yang Tian, Chi Li, Yonghe Wei and Dashuai Li    
The fault diagnosis method proposed in this paper can be applied to the diagnosis of bearings in machine tool spindle systems.
Revista: Applied Sciences

 
Zengyu Cai, Chunchen Tan, Jianwei Zhang, Liang Zhu and Yuan Feng    
As network technology continues to develop, the popularity of various intelligent terminals has accelerated, leading to a rapid growth in the scale of wireless network traffic. This growth has resulted in significant pressure on resource consumption and ... ver más
Revista: Applied Sciences

 
Jin-Woo Kong, Byoung-Doo Oh, Chulho Kim and Yu-Seop Kim    
Intracerebral hemorrhage (ICH) is a severe cerebrovascular disorder that poses a life-threatening risk, necessitating swift diagnosis and treatment. While CT scans are the most effective diagnostic tool for detecting cerebral hemorrhage, their interpreta... ver más
Revista: Applied Sciences