Resumen
In this work, we propose a systematic procedure to design a fuzzy logic controller (FLC) to control the lateral motion of powered parachute (PPC) flying vehicles. The design process does not require knowing the details of vehicle dynamics. Moreover, the physical constraints of the system, such as the maximum error of the yaw angle and the maximum allowed steering angle, are naturally included in the designed controller. The effectiveness of the proposed controller was assessed using the nonlinear six degrees of freedom (6DOF) mathematical model of the PPC. The genetic algorithm (GA) optimization technique was used to optimize the distribution of the fuzzy membership functions in order to improve the performance of the suggested controller. The robustness of the proposed controller was evaluated by changing the values of the parafoil aerodynamic coefficients and the initial flight conditions.