Inicio  /  Aerospace  /  Vol: 9 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

Multi-Layer Fault-Tolerant Robust Filter for Integrated Navigation in Launch Inertial Coordinate System

Jun Kang    
Zhi Xiong    
Rong Wang and Ling Zhang    

Resumen

As to an aerospace vehicle, the flight span is large and the flight environment is complex. More than that, the existing navigation algorithms cannot meet the needs to provide accurate navigation parameters for aerospace vehicles, which results in the decline of navigation accuracy. This paper proposes a multi-layer, fault-tolerant robust filtering algorithm of aerospace vehicle in the launch inertial coordinate system to address this problem. Firstly, the launch inertial coordinate system is used as the reference coordinate system for navigation calculation, and the state equation and measurement equation of the navigation system are established in this coordinate system to improve the modeling accuracy of the navigation system. On this basis, a multi-layer, fault-tolerant robust filtering algorithm is designed to estimate and compensate the unknown input in the state equation in real time and adjust the noise variance matrix in the measurement equation adaptively. Simulation results show that the errors about the integrated navigation system output parameters are reduced, through this algorithm, which improves the attitude, velocity and position estimation accuracy of the integrated navigation system. In addition, the algorithm enhances the fault tolerance and robustness of the filtering algorithm.

 Artículos similares

       
 
Eunkyu Lee, Junaid Khan, Umar Zaman, Jaebin Ku, Sanha Kim and Kyungsup Kim    
With the global advancement of maritime autonomous surface ships (MASS), the critical task of verifying their key technologies, particularly in challenging conditions, becomes paramount. This study introduces a synthetic maritime traffic generation syste... ver más
Revista: Applied Sciences

 
Chunchang Zhang and Ji Zeng    
The real-time transmission of ship status data from vessels to shore is crucial for live status monitoring and guidance. Traditional reliance on expensive maritime satellite systems for this purpose is being reconsidered with the emergence of the global ... ver más

 
Lin Zhang, Yanbin Gao and Lianwu Guan    
For seabed mapping, the prevalence of autonomous underwater vehicles (AUVs) employing side-scan sonar (SSS) necessitates robust navigation solutions. However, the positioning errors of traditional strapdown inertial navigation system (SINS) and Doppler v... ver más

 
Joshua J. R. Critchley-Marrows, Xiaofeng Wu, Yosuke Kawabata and Shinichi Nakasuka    
In recent years, the number of expected missions to the Moon has increased significantly. With limited terrestrial-based infrastructure to support this number of missions, as well as restricted visibility over intended mission areas, there is a need for ... ver más
Revista: Aerospace

 
Luisa Boni, Marco Bassetto and Alessandro A. Quarta    
Photonic solar sails are a class of advanced propellantless propulsion systems that use thin, large, lightweight membranes to convert the momentum of light from the Sun into thrust for space navigation. The conceptually simple nature of such a fascinatin... ver más
Revista: Aerospace