Inicio  /  Aerospace  /  Vol: 9 Par: 12 (2022)  /  Artículo
ARTÍCULO
TITULO

Sensitivity Analysis of Geometrical Parameters to the Flow of Pre-swirl System after Turbine Blade Fracture

Gang Zhao    
Tian Qiu and Peng Liu    

Resumen

The pre-swirl stator-rotor system is a common and important structure in gas turbines, and its main function is to provide cold air to the turbine blades with a low relative total temperature. Under normal conditions, the boundaries of the system are symmetrical and there is sufficient margin for each blade. However, a fracture of turbine blades can upset this balance, resulting in potentially different cold-air conditions for each blade. Therefore, to ensure the safety of the other blades after a single-blade break, it is necessary to know the cold-air distribution law of the system after a blade fracture. In this paper, the effects of geometric parameters (including pre-swirl angle, a; the area ratio of nozzles and holes, ?; gap ratio, G; and radius ratio of nozzle and hole, d) of a pre-swirl stator-rotor system on the mass-flow-rate ratio, ?; total-pressure-loss coefficient, Cp; discharge coefficient of holes, Cd; and adiabatic effectiveness, Tad, are investigated by numerical simulation with a single blade fractured. The results show that most of the geometric parameter changes do not increase ?hole_0. Moreover, measures to increase the influence of pre-swirl nozzles can reduce the influence of blade fracture on mass flow distribution, such as larger a, smaller ?, and smaller d. As for Cp, Cd, and Tad, they are more sensitive to changes in a and ?. For the pre-swirl system, to avoid more serious safety problems caused by individual blade fracture, the designer should make every effort to reduce the unevenness of the cold-air distribution. Increasing the effect of the nozzle could serve the aim, but it may increase the volatility of the flow. The pre-swirl nozzle of the leaf grille type is a good option to address flow fluctuations.

 Artículos similares

       
 
Hossein Salehi, Saeid Gharechelou, Saeed Golian, Mohammadreza Ranjbari and Babak Ghazi    
Hydrological modeling is essential for runoff simulations in line with climate studies, especially in remote areas with data scarcity. Advancements in climatic precipitation datasets have improved the accuracy of hydrological modeling. This research aims... ver más
Revista: Water

 
Bingyu Zhang, Yingtang Wei, Ronghua Liu, Shunzhen Tian and Kai Wei    
The calibration and validation of hydrological model simulation performance and model applicability evaluation in Gansu Province is the foundation of the application of the flash flood early warning and forecasting platform in Gansu Province. It is diffi... ver más
Revista: Water

 
Martina Hauser, Stefan Reinstaller, Martin Oberascher, Dirk Muschalla and Manfred Kleidorfer    
Owing to climate change, heavy rainfall events have increased in recent years, often resulting in urban flooding. Urban flood models usually consider buildings to be closed obstacles, which is not the case in reality. To address this research gap, an exi... ver más
Revista: Water

 
Fajia Zheng, Bin Zhang, Yuqiong Zhao, Jiakun Li, Fei Long and Qibo Feng    
Key errors of machine tools have a significant impact on their accuracy, however accurately and quickly measuring the geometric errors of machine tools is essential for key error identification. Fortunately, a quick and direct laser measurement method an... ver más
Revista: Applied Sciences

 
Ping Xiao and Haiyan Wang    
In response to the optimal operation of ocean container ships, this paper presents a two-level planning model that takes into account carbon tax policies. This model translates the CO2 emissions of ships into carbon tax costs and aims to minimize the ove... ver más
Revista: Applied Sciences