ARTÍCULO
TITULO

Neural Networks and Traditional Time Series Methods: A Synergistic Combination in State Economic Forecasts

Hansen    
J V    
Nelson    
R D    

Resumen

No disponible

PÁGINAS
pp. 863 - 873
REVISTAS SIMILARES
Water
Applied Sciences
AI

 Artículos similares

       
 
Andrea D?Ambrosio and Roberto Furfaro    
This paper demonstrates the utilization of Pontryagin Neural Networks (PoNNs) to acquire control strategies for achieving fuel-optimal trajectories. PoNNs, a subtype of Physics-Informed Neural Networks (PINNs), are tailored for solving optimal control pr... ver más
Revista: Aerospace

 
Xiaoou Li    
This paper tackles the challenge of time series forecasting in the presence of missing data. Traditional methods often struggle with such data, which leads to inaccurate predictions. We propose a novel framework that combines the strengths of Generative ... ver más
Revista: Information

 
Nikolaos Zafeiropoulos, Pavlos Bitilis, George E. Tsekouras and Konstantinos Kotis    
In the realm of Parkinson?s Disease (PD) research, the integration of wearable sensor data with personal health records (PHR) has emerged as a pivotal avenue for patient alerting and monitoring. This study delves into the complex domain of PD patient car... ver más
Revista: Information

 
Dimitris Mpouziotas, Jeries Besharat, Ioannis G. Tsoulos and Chrysostomos Stylios    
AliAmvra is a project developed to explore and promote high-quality catches of the Amvrakikos Gulf (GP) to Artas? wider regions. In addition, this project aimed to implement an integrated plan of action to form a business identity with high added value a... ver más
Revista: Information

 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information