|
|
|
Zengyu Cai, Chunchen Tan, Jianwei Zhang, Liang Zhu and Yuan Feng
As network technology continues to develop, the popularity of various intelligent terminals has accelerated, leading to a rapid growth in the scale of wireless network traffic. This growth has resulted in significant pressure on resource consumption and ...
ver más
|
|
|
|
|
|
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ...
ver más
|
|
|
|
|
|
Zeyu Xu, Wenbin Yu, Chengjun Zhang and Yadang Chen
In the era of noisy intermediate-scale quantum (NISQ) computing, the synergistic collaboration between quantum and classical computing models has emerged as a promising solution for tackling complex computational challenges. Long short-term memory (LSTM)...
ver más
|
|
|
|
|
|
Weilong Guang, Peng Wang, Jinshuai Zhang, Linjuan Yuan, Yue Wang, Guang Feng and Ran Tao
Predicting the flow situation of cavitation owing to its high-dimensional nonlinearity has posed great challenges. To address these challenges, this study presents a novel reduced order modeling (ROM) method to accurately analyze and predict cavitation f...
ver más
|
|
|
|
|
|
Diya Wang, Yonglin Zhang, Lixin Wu, Yupeng Tai, Haibin Wang, Jun Wang, Fabrice Meriaudeau and Fan Yang
In recent years, the study of deep learning techniques for underwater acoustic channel estimation has gained widespread attention. However, existing neural network channel estimation methods often overfit to training dataset noise levels, leading to dimi...
ver más
|
|
|