Resumen
Internet merupakan bagian penting dari kehidupan sehari-hari. Saat ini, tidak hanya dari anggota keluarga dan teman-teman, tetapi juga dari orang asing yang berlokasi diseluruh dunia yang mungkin telah mengunjungi restoran tertentu. Konsumen dapat memberikan pendapat mereka yang sudah tersedia secara online. Ulasan yang terlalu banyak akan memakan banyak waktu dan pada akhirnya akan menjadi bias. Klasifikasi sentimen bertujuan untuk mengatasi masalah ini dengan cara mengklasifikasikan ulasan pengguna ke pendapat positif atau negatif. Pengklasifikasi Naive Bayes adalah tekhnik machine learning yang populer untuk klasifikasi teks, karena sangat sederhana, efisien dan memiliki performa yang baik pada banyak domain. Namun, Naive Bayes memiliki kekurangan yaitu sangat sensitif pada fitur yang terlalu banyak, sehingga membuat akurasi menjadi rendah. Oleh karena itu, dalam penelitian ini menggunakan Information Gain sebagai seleksi fitur dan metode AdaBoost untuk mengurangi bias agar dapat meningkatkan akurasi pengklasifikasi Naive Bayes. Penelitian ini menghasilkan klasifikasi teks dalam bentuk positif dan negatif dari review restoran. Pengukuran berdasarkan akurasi Naive Bayes sebelum dan sesudah penambahan metode pemilihan fitur. Validasi dilakukan dengan menggunakan 10 fold cross validation. Sedangkan pengukuran akurasi diukur dengan confusion matrix dan kurva ROC. Hasil penelitian menunjukkan peningkatan akurasi Naive Bayes dari 73.00% jadi 81.50% dan nilai AUC dari 0.500 jadi 0.887. Sehingga dapat disimpulkan bahwa integrasi metode Information Gain dan AdaBoost pada analisis sentimen review restoran ini mampu meningkatkan akurasi algoritma Naive Bayes.