Inicio  /  Applied Sciences  /  Vol: 10 Par: 21 (2020)  /  Artículo
ARTÍCULO
TITULO

Deep Neural Network-Based Guidance Law Using Supervised Learning

Minjeong Kim    
Daseon Hong and Sungsu Park    

Resumen

This paper proposes that the deep neural network-based guidance (DNNG) law replace the proportional navigation guidance (PNG) law. This approach is performed by adopting a supervised learning (SL) method using a large amount of simulation data from the missile system with PNG. Then, the proposed DNNG is compared with the PNG, and its performance is evaluated via the hitting rate and the energy function. In addition, the DNN-based only line-of-sight (LOS) rate input guidance (DNNLG) law, in which only the LOS rate is an input variable, is introduced and compared with the PN and DNNG laws. Then, the DNNG and DNNLG laws examine behavior in an initial position other than the training data.

 Artículos similares

       
 
Pengfei Ning, Dianjun Zhang, Xuefeng Zhang, Jianhui Zhang, Yulong Liu, Xiaoyi Jiang and Yansheng Zhang    
The Array for Real-time Geostrophic Oceanography (Argo) program provides valuable data for maritime research and rescue operations. This paper is based on Argo historical and satellite observations, and inverted sea surface and submarine drift trajectori... ver más

 
Yifan Shang, Wanneng Yu, Guangmiao Zeng, Huihui Li and Yuegao Wu    
Image recognition is vital for intelligent ships? autonomous navigation. However, traditional methods often fail to accurately identify maritime objects? spatial positions, especially under electromagnetic silence. We introduce the StereoYOLO method, an ... ver más

 
Diya Wang, Yonglin Zhang, Lixin Wu, Yupeng Tai, Haibin Wang, Jun Wang, Fabrice Meriaudeau and Fan Yang    
In recent years, the study of deep learning techniques for underwater acoustic channel estimation has gained widespread attention. However, existing neural network channel estimation methods often overfit to training dataset noise levels, leading to dimi... ver más

 
Suryakant Tyagi and Sándor Szénási    
Machine learning and speech emotion recognition are rapidly evolving fields, significantly impacting human-centered computing. Machine learning enables computers to learn from data and make predictions, while speech emotion recognition allows computers t... ver más
Revista: Algorithms

 
Shubin Wang, Yuanyuan Chen and Zhang Yi    
The structure and function of retinal vessels play a crucial role in diagnosing and treating various ocular and systemic diseases. Therefore, the accurate segmentation of retinal vessels is of paramount importance to assist a clinical diagnosis. U-Net ha... ver más
Revista: Applied Sciences