Resumen
Evaluating the impacts of warming on water balance components in the groundwater?soil?plant?atmosphere continuum (GSPAC) and crop growth are crucial for assessing the risk of water resources and food security under future global warming. A water transformation dynamical processes experimental device (WTDPED) was developed using a chamber coupled with a weighing lysimeter and groundwater supply system, which could simultaneously control both climatic and ground-water level conditions and accurately monitor water fluxes in the GSPAC. Two experiments with maize under increased temperature by 2 °C (T-warm) and ambient temperature (T-control) scenarios were conducted via the WTDPED. The duration of growing season decreased from 125 days under T-control to 117 days under 2 °C warming. There was little difference of total evapotranspiration (ET) (332.6 mm vs. 332.5 mm), soil water storage change (?W) (-119.0 mm vs. -119.0 mm), drainage (D) (-13.6 mm vs. -13.5 mm) between T-control and T-warm experiments. The average daily ET for maize significantly increased by approximately 6.7% (p < 0.05) in the T-warm experiment, especially during the sixth leaf to tasseling?silking stage with an increase of 0.36 mm with respect to the T-control experiment. There were evident decreases in LAI (leaf area index), whereas non-significant decreases in mean stem diameter, crop height and leaf chlorophyll content under T-warm compared to T-control experiment. However, the chlorophyll content increased by 12% during the sixth leaf to tasseling?silking stage under 2 °C warming, which accelerated the photosynthesis and transpiration rate. The grain yield and water-use efficiency (WUE) for maize increased by 11.0% and 11.1% in the T-warm experiment, respectively, especially due to enhanced growth during the sixth leaf to tasseling?silking stage. This study provided important references for agricultural planting and water management to adapt to a warming environment.