Inicio  /  Water  /  Vol: 10 Par: 11 (2018)  /  Artículo
ARTÍCULO
TITULO

Responses of Water Fluxes and Water-Use Efficiency of Maize to Warming Based on Water Transformation Dynamical Processes Experimental Device (WTDPED) Experiment

Yali Wu    
Ying Ma    
Xianfang Song    
Lihu Yang and Shengtian Yang    

Resumen

Evaluating the impacts of warming on water balance components in the groundwater?soil?plant?atmosphere continuum (GSPAC) and crop growth are crucial for assessing the risk of water resources and food security under future global warming. A water transformation dynamical processes experimental device (WTDPED) was developed using a chamber coupled with a weighing lysimeter and groundwater supply system, which could simultaneously control both climatic and ground-water level conditions and accurately monitor water fluxes in the GSPAC. Two experiments with maize under increased temperature by 2 °C (T-warm) and ambient temperature (T-control) scenarios were conducted via the WTDPED. The duration of growing season decreased from 125 days under T-control to 117 days under 2 °C warming. There was little difference of total evapotranspiration (ET) (332.6 mm vs. 332.5 mm), soil water storage change (?W) (-119.0 mm vs. -119.0 mm), drainage (D) (-13.6 mm vs. -13.5 mm) between T-control and T-warm experiments. The average daily ET for maize significantly increased by approximately 6.7% (p < 0.05) in the T-warm experiment, especially during the sixth leaf to tasseling?silking stage with an increase of 0.36 mm with respect to the T-control experiment. There were evident decreases in LAI (leaf area index), whereas non-significant decreases in mean stem diameter, crop height and leaf chlorophyll content under T-warm compared to T-control experiment. However, the chlorophyll content increased by 12% during the sixth leaf to tasseling?silking stage under 2 °C warming, which accelerated the photosynthesis and transpiration rate. The grain yield and water-use efficiency (WUE) for maize increased by 11.0% and 11.1% in the T-warm experiment, respectively, especially due to enhanced growth during the sixth leaf to tasseling?silking stage. This study provided important references for agricultural planting and water management to adapt to a warming environment.

 Artículos similares

       
 
Ruosi Zha, Kai Wang, Jianglong Sun, Haiwen Tu and Qi Hu    
In this paper, the ditching performance of a seaplane model on calm water and a uniform water current coupled with wind was numerically investigated. The overset grid technique was applied to treat the large amplitude of the body motions of the seaplane ... ver más

 
Dongxi Liu, Xiaoying Wang and Yujiao Chen    
In this work, in order to elucidate the three-dimensional (3D) resonant sloshing dynamics of the oil?water interface in an offshore cylindrical wet storage tank, a series of model experiments are conducted in a completely filled cylindrical tank containi... ver más

 
Huanxiao Hu, Yufan Lu, Chao Deng, Benqing Gan, Zhongliang Xie, Yuehui Cai and Aikun Chu    
Due to the unique characteristics of sandy soil layers, there is often a coupling effect of multiple grout diffusion patterns in the grouting process, and different slurry diffusion modes may lead to different responses of soil structures. In this study,... ver más
Revista: Buildings

 
Lin Sun, Junchao Li and Haoyu Lin    
Earthquakes impact the stability of municipal solid waste (MSW) landfills, especially those with high water levels, and may further lead to disastrous landslides. Numerical analysis offers an efficient and cost-effective way to study the seismic stabilit... ver más
Revista: Applied Sciences

 
Hye-In Ho, Chae-Hong Park, Kyeong-Eun Yoo, Nan-Young Kim and Soon-Jin Hwang    
Eutrophic freshwater ecosystems are vulnerable to toxin-producing cyanobacteria growth or harmful algal blooms. Cyanobacteria belonging to the Nostocales order form akinetes that are similar to the seeds of vascular plants, which are resting cells surrou... ver más
Revista: Water