Resumen
Because the failure potential of a landslide is difficult to assess, a motorway landslide that has obviously deformed was used as a case study in this research. Several multi-integrated geotechniques, including field investigation, drilling, electrical resistivity tomography (ERT), stability analysis, and numerical simulations, were used to achieve this goal. Field investigation with drilling was used to roughly determine the failure potential mass boundary and the material composition ERT technique was further used to distinguish the structure and composition of underground materials; the results agreed well with the field investigation, as well as the drilling data in the lithology judgement. The above investigations also showed the failure potential mass is in a slow sliding state and the slip surface roughly follows the contact zone between the upper soil and bedrock. Next, stability analysis based on the limit equilibrium method (LEM) was used to judge the current stability status of the slope, and its factor of safety (FOS) was 1.2 under the natural condition, 1.05 under the earthquake condition, and 1.15 under the rainfall condition. Based on the assessed potential slip surface and digital elevation data, a three-dimensional smoothed particle hydrodynamics (SPH) model was used to simulate the failure potential process. The dynamic information of the run-out behavior, including velocity, movement distance, and frictional energy, can be obtained, which is useful for hazard prediction.