Resumen
Autonomous navigation for agricultural machinery has broad and promising development prospects. Kalman filter technology, which can improve positioning accuracy, is widely used in navigation systems in different fields. However, there has not been much research performed into navigation for sprinkler irrigation machines (SIMs). In this paper, firstly, a self-developed SIM is introduced. Secondly, the kinematics model is established on the platform of the self-developed SIM, and the updated Sage?Husa adaptive Kalman filter, which is an accurate and real-time self-adaptive filtering algorithm, is applied in the navigation of the SIM with the aim of improving the positioning accuracy. Finally, experiment verifications were carried out, and the results show that the self-developed SIM has good navigation performance. Besides this, the influence of abnormal observations on the positioning accuracy of the system can be restrained by using the updated Sage?Husa adaptive Kalman filter. After using the updated Sage?Husa adaptive Kalman filter for the SIM, the maximum deviation between the SIM and the predetermined path is 0.18 m, and the average deviation is 0.08 m; these deviations are within a reasonable range. This proves that the updated Sage?Husa adaptive Kalman filter is applicable for the navigation of sprinkler irrigation machines.