Inicio  /  Applied Sciences  /  Vol: 9 Par: 7 (2019)  /  Artículo
ARTÍCULO
TITULO

Evaluation of Deep Learning Neural Networks for Surface Roughness Prediction Using Vibration Signal Analysis

Wan-Ju Lin    
Shih-Hsuan Lo    
Hong-Tsu Young and Che-Lun Hung    

Resumen

The use of surface roughness (Ra) to indicate product quality in the milling process in an intelligent monitoring system applied in-process has been developing. From the considerations of convenient installation and cost-effectiveness, accelerator vibration signals combined with deep learning predictive models for predicting surface roughness is a potential tool. In this paper, three models, namely, Fast Fourier Transform-Deep Neural Networks (FFT-DNN), Fast Fourier Transform Long Short Term Memory Network (FFT-LSTM), and one-dimensional convolutional neural network (1-D CNN), are used to explore the training and prediction performances. Feature extraction plays an important role in the training and predicting results. FFT and the one-dimensional convolution filter, known as 1-D CNN, are employed to extract vibration signals? raw data. The results show the following: (1) the LSTM model presents the temporal modeling ability to achieve a good performance at higher Ra value and (2) 1-D CNN, which is better at extracting features, exhibits highly accurate prediction performance at lower Ra ranges. Based on the results, vibration signals combined with a deep learning predictive model could be applied to predict the surface roughness in the milling process. Based on this experimental study, the use of prediction of the surface roughness via vibration signals using FFT-LSTM or 1-D CNN is recommended to develop an intelligent system.

 Artículos similares

       
 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures

 
Max Schrötter, Andreas Niemann and Bettina Schnor    
Over the last few years, a plethora of papers presenting machine-learning-based approaches for intrusion detection have been published. However, the majority of those papers do not compare their results with a proper baseline of a signature-based intrusi... ver más
Revista: Information

 
Xiaokai Li, Xiaolong Zhang, Faming Zhang, Jian Huang, Shixiong Tang and Zhiqing Liu    
The mountainous areas of Southwest China have the characteristics of valley deep-cutting, a large topographic gradient, complex geological structures, etc. With the development of infrastructure construction in the area, the construction of bridges acros... ver más
Revista: Water

 
Yong Liu, Xiaohui Yan, Wenying Du, Tianqi Zhang, Xiaopeng Bai and Ruichuan Nan    
The current work proposes a novel super-resolution convolutional transposed network (SRCTN) deep learning architecture for downscaling daily climatic variables. The algorithm was established based on a super-resolution convolutional neural network with t... ver más
Revista: Water

 
Futo Ueda, Hiroto Tanouchi, Nobuyuki Egusa and Takuya Yoshihiro    
River water-level prediction is crucial for mitigating flood damage caused by torrential rainfall. In this paper, we attempt to predict river water levels using a deep learning model based on radar rainfall data instead of data from upstream hydrological... ver más
Revista: Water