|
|
|
Arturs Kempelis, Inese Polaka, Andrejs Romanovs and Antons Patlins
Urban agriculture presents unique challenges, particularly in the context of microclimate monitoring, which is increasingly important in food production. This paper explores the application of convolutional neural networks (CNNs) to forecast key sensor m...
ver más
|
|
|
|
|
|
|
Omar Serghini, Hayat Semlali, Asmaa Maali, Abdelilah Ghammaz and Salvatore Serrano
Spectrum sensing is an essential function of cognitive radio technology that can enable the reuse of available radio resources by so-called secondary users without creating harmful interference with licensed users. The application of machine learning tec...
ver más
|
|
|
|
|
|
|
Mattia Pellegrino, Gianfranco Lombardo, George Adosoglou, Stefano Cagnoni, Panos M. Pardalos and Agostino Poggi
With the recent advances in machine learning (ML), several models have been successfully applied to financial and accounting data to predict the likelihood of companies? bankruptcy. However, time series have received little attention in the literature, w...
ver más
|
|
|
|
|
|
|
Shubin Wang, Yuanyuan Chen and Zhang Yi
The structure and function of retinal vessels play a crucial role in diagnosing and treating various ocular and systemic diseases. Therefore, the accurate segmentation of retinal vessels is of paramount importance to assist a clinical diagnosis. U-Net ha...
ver más
|
|
|
|
|
|
|
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p...
ver más
|
|
|
|
|
|
|
Tianhao Gao, Meng Zhang, Yifan Zhu, Youjian Zhang, Xiangsheng Pang, Jing Ying and Wenming Liu
Classifying sports videos is complex due to their dynamic nature. Traditional methods, like optical flow and the Histogram of Oriented Gradient (HOG), are limited by their need for expertise and lack of universality. Deep learning, particularly Convoluti...
ver más
|
|
|
|
|
|
|
Liang Liu, Tianbin Li and Chunchi Ma
Three-dimensional (3D) models provide the most intuitive representation of geological conditions. Traditional modeling methods heavily depend on technicians? expertise and lack ease of updating. In this study, we introduce a deep learning-based method fo...
ver más
|
|
|
|
|
|
|
Shubin Wang, Yuanyuan Chen and Zhang Yi
Diabetic retinopathy is a prevalent eye disease that poses a potential risk of blindness. Nevertheless, due to the small size of diabetic retinopathy lesions and the high interclass similarity in terms of location, color, and shape among different lesion...
ver más
|
|
|
|
|
|
|
Weijun Li, Jintong Liu, Yuxiao Gao, Xinyong Zhang and Jianlai Gu
The task of named entity recognition (NER) is to identify entities in the text and predict their categories. In real-life scenarios, the context of the text is often complex, and there may exist nested entities within an entity. This kind of entity is ca...
ver más
|
|
|
|
|
|
|
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ...
ver más
|
|
|
|