Inicio  /  Algorithms  /  Vol: 16 Par: 12 (2023)  /  Artículo
ARTÍCULO
TITULO

An Efficient Optimized DenseNet Model for Aspect-Based Multi-Label Classification

Nasir Ayub    
Tayyaba    
Saddam Hussain    
Syed Sajid Ullah and Jawaid Iqbal    

Resumen

Sentiment analysis holds great importance within the domain of natural language processing as it examines both the expressed and underlying emotions conveyed through review content. Furthermore, researchers have discovered that relying solely on the overall sentiment derived from the textual content is inadequate. Consequently, sentiment analysis was developed to extract nuanced expressions from textual information. One of the challenges in this field is effectively extracting emotional elements using multi-label data that covers various aspects. This article presents a novel approach called the Ensemble of DenseNet based on Aquila Optimizer (EDAO). EDAO is specifically designed to enhance the precision and diversity of multi-label learners. Unlike traditional multi-label methods, EDAO strongly emphasizes improving model diversity and accuracy in multi-label scenarios. To evaluate the effectiveness of our approach, we conducted experiments on seven distinct datasets, including emotions, hotels, movies, proteins, automobiles, medical, news, and birds. Our initial strategy involves establishing a preprocessing mechanism to obtain precise and refined data. Subsequently, we used the Vader tool with Bag of Words (BoW) for feature extraction. In the third stage, we created word associations using the word2vec method. The improved data were also used to train and test the DenseNet model, which was fine-tuned using the Aquila Optimizer (AO). On the news, emotion, auto, bird, movie, hotel, protein, and medical datasets, utilizing the aspect-based multi-labeling technique, we achieved accuracy rates of 95%, 97%, and 96%, respectively, with DenseNet-AO. Our proposed model demonstrates that EDAO outperforms other standard methods across various multi-label datasets with different dimensions. The implemented strategy has been rigorously validated through experimental results, showcasing its effectiveness compared to existing benchmark approaches.

 Artículos similares

       
 
Soe Thandar Aung, Nobuo Funabiki, Lynn Htet Aung, Safira Adine Kinari, Mustika Mentari and Khaing Hsu Wai    
The Flutter framework with Dart programming allows developers to effortlessly build applications for both web and mobile from a single codebase. It enables efficient conversions to native codes for mobile apps and optimized JavaScript for web browsers. S... ver más
Revista: Information

 
Aquib Raza, Thien-Luan Phan, Hung-Chung Li, Nguyen Van Hieu, Tran Trung Nghia and Congo Tak Shing Ching    
Knee osteoarthritis (KOA) is a leading cause of disability, particularly affecting older adults due to the deterioration of articular cartilage within the knee joint. This condition is characterized by pain, stiffness, and impaired movement, posing a sig... ver más
Revista: Information

 
Giovanni Totaro, Felice De Nicola, Paola Spena, Giovangiuseppe Giusto, Monica Ciminello, Ilan Weissberg, Yehonatan Carmi, Daniel Arviv and Nir Lalazar    
This article discloses the activity developed in the framework of the research project ?GRID? aiming at the feasibility demonstration of a fiber optic sensing system (FOS), based on fiber Bragg gratings (FGB), embedded in the ribs of a conical grid struc... ver más
Revista: Aerospace

 
Baobao Liu, Heying Wang, Zifan Cao, Yu Wang, Lu Tao, Jingjing Yang and Kaibing Zhang    
Defect detection holds significant importance in improving the overall quality of fabric manufacturing. To improve the effectiveness and accuracy of fabric defect detection, we propose the PRC-Light YOLO model for fabric defect detection and establish a ... ver más
Revista: Applied Sciences

 
Varsha S. Lalapura, Veerender Reddy Bhimavarapu, J. Amudha and Hariram Selvamurugan Satheesh    
The Recurrent Neural Networks (RNNs) are an essential class of supervised learning algorithms. Complex tasks like speech recognition, machine translation, sentiment classification, weather prediction, etc., are now performed by well-trained RNNs. Local o... ver más
Revista: Algorithms