Inicio  /  Information  /  Vol: 15 Par: 4 (2024)  /  Artículo
ARTÍCULO
TITULO

A Comparative Study of Machine Learning Classifiers for Enhancing Knee Osteoarthritis Diagnosis

Aquib Raza    
Thien-Luan Phan    
Hung-Chung Li    
Nguyen Van Hieu    
Tran Trung Nghia and Congo Tak Shing Ching    

Resumen

Knee osteoarthritis (KOA) is a leading cause of disability, particularly affecting older adults due to the deterioration of articular cartilage within the knee joint. This condition is characterized by pain, stiffness, and impaired movement, posing a significant challenge in medical diagnostics and treatment planning, especially due to the current inability for early and accurate detection or monitoring of disease progression. This research introduces a multifaceted approach employing feature extraction and machine learning (ML) to improve the accuracy of diagnosing and classifying KOA stages from radiographic images. Utilizing a dataset of 3154 knee X-ray images, this study implemented feature extraction methods such as Histogram of Oriented Gradients (HOG) with Linear Discriminant Analysis (LDA) and Min?Max scaling to prepare the data for classification. The study evaluates six ML classifiers?K Nearest Neighbors classifier, Support Vector Machine (SVM), Gaussian Naive Bayes, Decision Tree, Random Forest, and XGBoost?optimized via GridSearchCV for hyperparameter tuning within a 10-fold Stratified K-Fold cross-validation framework. An ensemble model has also been made for the already high-accuracy models to explore the possibility of enhancing the accuracy and reducing the risk of overfitting. The XGBoost classifier and the ensemble model emerged as the most efficient for multiclass classification, with an accuracy of 98.90%, distinguishing between healthy and unhealthy knees. These results underscore the potential of integrating advanced ML methodologies for the nuanced and accurate diagnosis and classification of KOA, offering new avenues for clinical application and future research in medical imaging diagnostics.

 Artículos similares

       
 
Camino Eck, Xiaoyu Kröner and Dorte Janussen    
This study investigates taxonomic characteristics of carnivorous sponges from the Southern Ocean. The specimens were collected in 2010 from deep-sea hydrothermal vents of the East Scotia Ridge during the RRS James Cook Cruise JC42. All the investigated s... ver más

 
Yunfei Yang, Zhicheng Zhang, Jiapeng Zhao, Bin Zhang, Lei Zhang, Qi Hu and Jianglong Sun    
Resistance serves as a critical performance metric for ships. Swift and accurate resistance prediction can enhance ship design efficiency. Currently, methods for determining ship resistance encompass model tests, estimation techniques, and computational ... ver más

 
Shizhen Li, Qinfeng Wu, Yufeng Liu, Longfei Qiao, Zimeng Guo and Fei Yan    
To mitigate the interference of waves on an offshore operation ship, heave compensation systems find widespread application. The performance of heave compensation systems significantly influences the efficiency and safety of maritime operations. This stu... ver más

 
Yifan Wang, Jinglei Xu, Qihao Qin, Ruiqing Guan and Le Cai    
In this study, we propose a novel dynamic mode decomposition (DMD) energy sorting criterion that works in conjunction with the conventional DMD amplitude-frequency sorting criterion on the high-dimensional schlieren dataset of the unsteady flow of a spik... ver más
Revista: Aerospace

 
Kristina Mazur, Mischa Saleh and Mirko Hornung    
Early and rapid environmental assessment of newly developed aircraft concepts is eminent in today?s climate debate. This can shorten the decision-making process and thus accelerate the entry into service of climate-friendly technologies. A holistic appro... ver más
Revista: Aerospace