Inicio  /  Applied Sciences  /  Vol: 10 Par: 2 (2020)  /  Artículo
ARTÍCULO
TITULO

A Neural Network Fuzzy Energy Management Strategy for Hybrid Electric Vehicles Based on Driving Cycle Recognition

Qi Zhang and Xiaoling Fu    

Resumen

Aiming at the problems inherent in the traditional fuzzy energy management strategy (F-EMS), such as poor adaptive ability and lack of self-learning, a neural network fuzzy energy management strategy (NNF-EMS) for hybrid electric vehicles (HEVs) based on driving cycle recognition (DCR) is designed. The DCR was realized by the method of neural network sample learning and characteristic parameter analysis, and the recognition results were considered as the reference input of the fuzzy controller with further optimization of the membership function, resulting in improvement in the poor pertinence of F-EMS driving cycles. The research results show that the proposed NNF-EMS can realize the adaptive optimization of fuzzy membership function and fuzzy rules under different driving cycles. Therefore, the proposed NNF-EMS has strong robustness and practicability under different driving cycles.

 Artículos similares

       
 
Huihui Zhu, Hexiang Lin, Shaojun Wu, Wei Luo, Hui Zhang, Yuancheng Zhan, Xiaoting Wang, Aiqun Liu and Leong Chuan Kwek    
Integrated photonic chips leverage the recent developments in integrated circuit technology, along with the control and manipulation of light signals, to realize the integration of multiple optical components onto a single chip. By exploiting the power o... ver más
Revista: Information

 
Zeyu Xu, Wenbin Yu, Chengjun Zhang and Yadang Chen    
In the era of noisy intermediate-scale quantum (NISQ) computing, the synergistic collaboration between quantum and classical computing models has emerged as a promising solution for tackling complex computational challenges. Long short-term memory (LSTM)... ver más
Revista: Information

 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Zhenyu Feng, Qianqian You, Kun Chen, Houjin Song and Haoxuan Peng    
Evacuation simulation is an important method for studying and evaluating the safety of passenger evacuation, and the key lies in whether it can accurately predict personnel evacuation behavior in different environments. The existing models have good adap... ver más
Revista: Aerospace

 
Ping Huang and Yafeng Wu    
Airborne speech enhancement is always a major challenge for the security of airborne systems. Recently, multi-objective learning technology has become one of the mainstream methods of monaural speech enhancement. In this paper, we propose a novel multi-o... ver más
Revista: Aerospace