Inicio  /  Computation  /  Vol: 9 Par: 9 (2021)  /  Artículo
ARTÍCULO
TITULO

Physics-Based Neural Network Methods for Solving Parameterized Singular Perturbation Problem

Tatiana Lazovskaya    
Galina Malykhina and Dmitry Tarkhov    

Resumen

No disponible

 Artículos similares

       
 
Tommaso Zanotti, Francesco Maria Puglisi and Paolo Pavan    
Different in-memory computing paradigms enabled by emerging non-volatile memory technologies are promising solutions for the development of ultra-low-power hardware for edge computing. Among these, SIMPLY, a smart logic-in-memory architecture, provides h... ver más

 
Mengning Wu, Christos Stefanakos and Zhen Gao    
Short-term wave forecasts are essential for the execution of marine operations. In this paper, an efficient and reliable physics-based machine learning (PBML) model is proposed to realize the multi-step-ahead forecasting of wave conditions (e.g., signifi... ver más

 
Chunyang Hu and Meng Xu    
Multi-Robot Confrontation on physics-based simulators is a complex and time-consuming task, but simulators are required to evaluate the performance of the advanced algorithms. Recently, a few advanced algorithms have been able to produce considerably com... ver más
Revista: Information

 
Hart, S. J. Shaffer, R. E. Rose-Pehrsson, S. L. McDonald, J. R.     Pág. 797 - 804