Inicio  /  Information  /  Vol: 10 Par: 11 (2019)  /  Artículo
ARTÍCULO
TITULO

Fuzzy Reinforcement Learning and Curriculum Transfer Learning for Micromanagement in Multi-Robot Confrontation

Chunyang Hu and Meng Xu    

Resumen

Multi-Robot Confrontation on physics-based simulators is a complex and time-consuming task, but simulators are required to evaluate the performance of the advanced algorithms. Recently, a few advanced algorithms have been able to produce considerably complex levels in the context of the robot confrontation system when the agents are facing multiple opponents. Meanwhile, the current confrontation decision-making system suffers from difficulties in optimization and generalization. In this paper, a fuzzy reinforcement learning (RL) and the curriculum transfer learning are applied to the micromanagement for robot confrontation system. Firstly, an improved Q-learning in the semi-Markov decision-making process is designed to train the agent and an efficient RL model is defined to avoid the curse of dimensionality. Secondly, a multi-agent RL algorithm with parameter sharing is proposed to train the agents. We use a neural network with adaptive momentum acceleration as a function approximator to estimate the state-action function. Then, a method of fuzzy logic is used to regulate the learning rate of RL. Thirdly, a curriculum transfer learning method is used to extend the RL model to more difficult scenarios, which ensures the generalization of the decision-making system. The experimental results show that the proposed method is effective.