ARTÍCULO
TITULO

A K-Means Clustering Algorithm to Determine Representative Operational Profiles of a Ship Using AIS Data

Jongseo Park and Minjoo Choi    

Resumen

Defining the appropriate functional requirements in the early ship design stage is important in order that costs that are caused by the over- or under-specified functional capabilities do not increase. This paper presents a K-means clustering algorithm for the determination of functional requirements. It uses automatic identification system (AIS) data from a reference ship to determine the representative operational profiles, which can support decision-makers in defining the functional requirements of ships that will be performing similar missions as those of the reference ship. In a case study, we used this method as part of a ship design project, in which the functional requirements of a battery-only electric ship are defined using AIS data from a reference ship. Results indicate that the cost can be reduced by determining the functional requirements using the proposed method.

 Artículos similares

       
 
Rola R. Hassan, Manar Abu Talib, Fikri Dweiri and Jorge Roman    
Implementing the European Foundation for Quality Management (EFQM) business excellence model in organizations is time- and cost-consuming. The integration of artificial intelligence (AI) into the EFQM business excellence model is a promising approach to ... ver más
Revista: Applied Sciences

 
Huichan Kim, Sunho Park and Seong-Yeob Jeong    
Growing interest in finding the optimal route through the arctic ocean, and sea ice concentration is also emerging as a factor to be considered. In this paper, an algorithm to calculate the sea ice concentration was developed based on the images taken du... ver más

 
Henrique José Wilbert, Aurélio Faustino Hoppe, Andreza Sartori, Stefano Frizzo Stefenon and Luís Augusto Silva    
While there are several ways to identify customer behaviors, few extract this value from information already in a database, much less extract relevant characteristics. This paper presents the development of a prototype using the recency, frequency, and m... ver más
Revista: Algorithms

 
Libero Nigro and Franco Cicirelli    
K-Means is a ?de facto? standard clustering algorithm due to its simplicity and efficiency. K-Means, though, strongly depends on the initialization of the centroids (seeding method) and often gets stuck in a local sub-optimal solution. K-Means, in fact, ... ver más
Revista: Algorithms

 
Sejeong Kim and Jongho Park    
Recently, an Unmanned Aerial Vehicle (UAV)-based Wireless Sensor Network (WSN) for data collection was proposed. Multiple UAVs are more effective than a single UAV in wide WSNs. However, in this scenario, many factors must be considered, such as collisio... ver más
Revista: Aerospace