Inicio  /  Applied Sciences  /  Vol: 12 Par: 20 (2022)  /  Artículo
ARTÍCULO
TITULO

Hyperparameter Tuned Deep Autoencoder Model for Road Classification Model in Intelligent Transportation Systems

Manar Ahmed Hamza    
Hamed Alqahtani    
Dalia H. Elkamchouchi    
Hussain Alshahrani    
Jaber S. Alzahrani    
Mohammed Maray    
Mohamed Ahmed Elfaki and Amira Sayed A. Aziz    

Resumen

Unmanned aerial vehicles (UAVs) have significant abilities for automatic detection and mapping of urban surface materials due to their high resolution. It requires a massive quantity of data to understand the ground material properties. In recent days, computer vision based approaches for intelligent transportation systems (ITS) have gained considerable interest among research communities and business people. Road classification using remote sensing images plays a vital role in urban planning. It remains challenging because of scene complexity, fluctuating road structures, and inappropriate illumination circumstances. The design of intelligent models and other machine learning (ML) approaches for road classification has yet to be further explored. In this aspect, this paper presents a metaheuristics optimization with deep autoencoder enabled road classification model (MODAE-RCM). The presented MODAE-RCM technique mainly focuses on the classification of roads into five types, namely wet, ice, rough, dry, and curvy roads. In order to accomplish this, the presented MODAE-RCM technique exploits modified fruit fly optimization (MFFO) with neural architectural search network (NASNet) for feature extraction. In order to classify roads, an interactive search algorithm (ISA) with a DAE model is used. The exploitation of metaheuristic hyperparameter optimizers helps to improve the classification results. The experimental validation of the MODAE-RCM technique was tested by employing a dataset comprising five road types. The simulation analysis highlighted the superior outcomes of the MODAE-RCM approach to other existing techniques.

 Artículos similares

       
 
Aquib Raza, Thien-Luan Phan, Hung-Chung Li, Nguyen Van Hieu, Tran Trung Nghia and Congo Tak Shing Ching    
Knee osteoarthritis (KOA) is a leading cause of disability, particularly affecting older adults due to the deterioration of articular cartilage within the knee joint. This condition is characterized by pain, stiffness, and impaired movement, posing a sig... ver más
Revista: Information

 
Vinh Pham, Maxim Tyan, Tuan Anh Nguyen and Jae-Woo Lee    
Multi-fidelity surrogate modeling (MFSM) methods are gaining recognition for their effectiveness in addressing simulation-based design challenges. Prior approaches have typically relied on recursive techniques, combining a limited number of high-fidelity... ver más
Revista: Aerospace

 
Feifei He, Qinjuan Wan, Yongqiang Wang, Jiang Wu, Xiaoqi Zhang and Yu Feng    
Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal... ver más
Revista: Water

 
Zhongda Ren, Chuanjie Liu, Yafei Ou, Peng Zhang, Heshan Fan, Xiaolong Zhao, Heqin Cheng, Lizhi Teng, Ming Tang and Fengnian Zhou    
Effectively simulating the variation in suspended sediment concentration (SSC) in estuaries during typhoons is significant for the water quality and ecological conditions of estuarine shoal wetlands and their adjacent coastal waters. During typhoons, SSC... ver más
Revista: Water

 
Fátima Trindade Neves, Manuela Aparicio and Miguel de Castro Neto    
In the rapidly evolving landscape of urban development, where smart cities increasingly rely on artificial intelligence (AI) solutions to address complex challenges, using AI to accurately predict real estate prices becomes a multifaceted and crucial tas... ver más
Revista: Applied Sciences