ARTÍCULO
TITULO

Temporal Prediction of Coastal Water Quality Based on Environmental Factors with Machine Learning

Junan Lin    
Qianqian Liu    
Yang Song    
Jiting Liu    
Yixue Yin and Nathan S. Hall    

Resumen

The accurate forecast of algal blooms can provide helpful information for water resource management. However, the complex relationship between environmental variables and blooms makes the forecast challenging. In this study, we build a pipeline incorporating four commonly used machine learning models, Support Vector Regression (SVR), Random Forest Regression (RFR), Wavelet Analysis (WA)-Back Propagation Neural Network (BPNN) and WA-Long Short-Term Memory (LSTM), to predict chlorophyll-a in coastal waters. Two areas with distinct environmental features, the Neuse River Estuary, NC, USA?where machine learning models are applied for short-term algal bloom forecast at single stations for the first time?and the Scripps Pier, CA, USA, are selected. Applying the pipeline, we can easily switch from the NRE forecast to the Scripps Pier forecast with minimum model tuning. The pipeline successfully predicts the occurrence of algal blooms in both regions, with more robustness using WA-LSTM and WA-BPNN than SVR and RFR. The pipeline allows us to find the best results by trying different numbers of neuron hidden layers. The pipeline is easily adaptable to other coastal areas. Experience with the two study regions demonstrated that enrichment of the dataset by including dominant physical processes is necessary to improve chlorophyll prediction when applying it to other aquatic systems.

 Artículos similares

       
 
Nosa Aikodon, Sandra Ortega-Martorell and Ivan Olier    
Patients in Intensive Care Units (ICU) face the threat of decompensation, a rapid decline in health associated with a high risk of death. This study focuses on creating and evaluating machine learning (ML) models to predict decompensation risk in ICU pat... ver más
Revista: Algorithms

 
Ye Xiao, Yupeng Hu, Jizhao Liu, Yi Xiao and Qianzhen Liu    
Ship trajectory prediction is essential for ensuring safe route planning and to have advanced warning of the dangers at sea. With the development of deep learning, most of the current research has explored advanced prediction methods based on historical ... ver más

 
Ping Huang and Yafeng Wu    
Airborne speech enhancement is always a major challenge for the security of airborne systems. Recently, multi-objective learning technology has become one of the mainstream methods of monaural speech enhancement. In this paper, we propose a novel multi-o... ver más
Revista: Aerospace

 
Sorin Zoican, Roxana Zoican, Dan Galatchi and Marius Vochin    
This paper illustrates a general framework in which a neural network application can be easily integrated and proposes a traffic forecasting approach that uses neural networks based on graphs. Neural networks based on graphs have the advantage of capturi... ver más
Revista: Applied Sciences

 
Futo Ueda, Hiroto Tanouchi, Nobuyuki Egusa and Takuya Yoshihiro    
River water-level prediction is crucial for mitigating flood damage caused by torrential rainfall. In this paper, we attempt to predict river water levels using a deep learning model based on radar rainfall data instead of data from upstream hydrological... ver más
Revista: Water