Redirigiendo al acceso original de articulo en 16 segundos...
ARTÍCULO
TITULO

L2-Gain Based Adaptive Robust Heel/Roll Reduction Control Using Fin Stabilizer during Ship Turns

Zhang Songtao and Zhao Peng    

Resumen

The rolling and heeling experienced by a ship during turning will be more severe under the interference of winds and waves, which will seriously affect the navigation safety of the ship. The fin stabilizer is currently the best active anti-rolling device, which is usually used to reduce the roll of the ship during straight-line sailing. The purpose of this work is to study the use of fin stabilizers to reduce the rolling and heeling during ship turning, considering the non-linearity and uncertainty during the rotation. The 4 degrees of freedom (4-DOF) nonlinear motion model of a multi-purpose naval vessel is established. The forces and moments produced by fin stabilizers, rudders, propellers, and waves are also considered. The nonlinear control model of rotation and roll is derived and established. Given the non-linearity and uncertainty in the ship turning process, an L2-gain based robust adaptive control is proposed to control the fin stabilizers to reduce the turning heel and roll motion. The proof of the stability and the detailed design process of the controller are also given. Simulations are carried out to verify the effectiveness of the proposed control strategy. For comparison purposes, the simulation results under a well-tuned PID controller are also given. The simulation results show that the developed control strategy can effectively reduce the heel and roll during ship turns, and it has good robustness against uncertainty and internal and external interference.

 Artículos similares

       
 
Kamal Rsetam, Yusai Zheng, Zhenwei Cao and Zhihong Man    
In this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection ... ver más

 
Xi Duan, Jian Liu and Xinjie Wang    
The real-time simulation technology of large-scale open sea surfaces has been of great importance in fields such as computer graphics, ocean engineering, and national security. However, existing technologies typically have performance requirements or pla... ver más

 
Lei Yang, Xinze Chen, Yuanqi Zhang, Baoxiang Feng, Haibing Wen, Ting Yang, Xin Zhao, Jingjing Huang, Darui Zhu, Yaopeng Zhao, Aimin Zhang and Xiangqian Tong    
Underwater wireless power transfer (UWPT) systems are appropriate for battery charging of compact, submerged devices without a complicated and expensive sealing structure or human contact because the power source and load are not physically connected. Fo... ver más

 
Jing Luo, Yuhang Zhang, Jiayuan Zhuang and Yumin Su    
The development of intelligent task allocation and path planning algorithms for unmanned surface vehicles (USVs) is gaining significant interest, particularly in supporting complex ocean operations. This paper proposes an intelligent hybrid algorithm tha... ver más

 
Nattakan Supajaidee, Nawinda Chutsagulprom and Sompop Moonchai    
Ordinary kriging (OK) is a popular interpolation method for its ability to simultaneously minimize error variance and deliver statistically optimal and unbiased predictions. In this work, the adaptive moving window kriging with K-means clustering (AMWKK)... ver más
Revista: Algorithms