Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied System Innovation  /  Vol: 7 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

Adaptive Active Disturbance Rejection Control for Vehicle Steer-by-Wire under Communication Time Delays

Kamal Rsetam    
Yusai Zheng    
Zhenwei Cao and Zhihong Man    

Resumen

In this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection control comprises the following two elements: (1) An adaptive extended state observer and (2) an adaptive state error feedback controller. The adaptive extended state observer with adaptive gains is employed for estimating the unmeasured velocity, acceleration, and compound disturbance which consists of system parameter uncertainties, nonlinearities, exterior disturbances, and time delay in which the observer gains are dynamically adjusted based on the estimation error to enhance estimation performances. Based on the accurate estimations of the adaptive extended state observer, the proposed adaptive full state error feedback controller is equipped with variable gains driven by the tracking error to develop control precision. The integration of the advantages of the adaptive extended state observer and the adaptive full state error feedback controller can improve the dynamic transient and static steady-state effectiveness, respectively. To assess the superior performance of the proposed adaptive active disturbance rejection control, a comparative analysis is conducted between the proposed control scheme and the classical active disturbance rejection control in two different cases. It is worth noting that the active disturbance rejection control serves as a benchmark for evaluating the performance of the proposed control approach. The results from the comparison studies executing two simulated cases validate the superiority of the suggested control, in which estimation, tracking response rate, and steering angle precision are greatly improved by the scheme proposed in this article.

 Artículos similares

       
 
Muhammad Tahir Akhtar    
It is well-known that performance of the classical algorithms for active noise control (ANC) systems severely degrades when implemented for controlling the impulsive sources. The objective of this paper is to propose a new recursive least squares (RLS) a... ver más
Revista: Applied Sciences

 
Xin Qi, Chunyang Sheng, Yongbao Guo, Tao Su and Haixia Wang    
Aiming at the problem that online parameter identification, based on the Model Reference Adaptive System (MRAS), is easily affected by the high-frequency noise of the sensor, an improved MRAS, based on variable bandwidth linear Active Disturbance Rejecti... ver más
Revista: Applied Sciences

 
Ruben Tapia-Olvera, Francisco Beltran-Carbajal and Antonio Valderrabano-Gonzalez    
The synchronous generator is one of the most important active components in current electric power systems. New control methods should be designed to guarantee an efficient dynamic performance of the synchronous generator in strongly interconnected nonli... ver más
Revista: Applied Sciences

 
Xudong Han, Yongling Fu, Yan Wang, Mingkang Wang and Deming Zhu    
The control accuracy and stability of the electrohydrostatic actuator (EHA) are directly impacted by parameter uncertainty, disturbance uncertainty, and non-matching disturbance, which negatively impacts aircraft rudder maneuvering performance and even r... ver más
Revista: Aerospace

 
Yongjie Zhuang and Yangfan Liu    
In commercial non-adaptive active noise control (ANC) applications, an IIR filter structure is often used to reduce real-time computations. On the contrary, an FIR filter structure is usually preferred in the filter design phase because the FIR filter de... ver más
Revista: Acoustics