Resumen
A data-driven method, the truncated LS-SVM, is proposed for estimating the nondimensional hydrodynamic coefficients of a nonlinear manoeuvring model. Experimental data collected in a shallow water towing tank are utilized in this study. To assess the accuracy and robustness of the truncated LS-SVM method, different test data sizes are selected as the training set. The identified nondimensional hydrodynamic coefficients are presented, as well as the corresponding parameter uncertainty and confidence intervals. The validation is carried out using the reference data, and statistical measures, such as the correlation coefficient, centred RMS difference, and standard deviation are employed to quantify the similarity. The results demonstrate that the truncated LS-SVM method effectively models the hydrodynamic force prediction problems with a large training set, reducing parameter uncertainty and yielding more convincing results.