Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

Parameter Identification of a Model Scale Ship Drive Train

Arthur Vrijdag and Michele Martelli    

Resumen

Simulation models of the ship propulsion system play an increasingly important role, for instance in controller design and condition monitoring. However, creation of such simulation models requires significant time and effort. In this paper, the application of deterministic identification techniques on a DC-electric ship drive train is explored as an alternative for data-driven identification techniques that require extensive measured data sets collected over long periods of ship operation. First, a nonlinear and a linear simulation model that represent the dynamic behavior of the propulsion plant are developed, and the main parameters to be identified are defined. Then, a set of experiments on a model scale boat in the bollard pull condition are conducted using an ad hoc experimental setup and data acquisition system. Subsequently, various types of identification techniques are applied, aiming to determine the unknown model parameters. Eventually, a comparison is made between experimental and simulated results, using the different sets of the estimated parameters. The value of the demonstrated approaches lies in the fast determination of unknown system parameters. These parameters can be used in simulation models, which in turn can be used for various purposes such as system controller development and tuning. Furthermore, periodic determination of system parameters can support condition monitoring to detect faults or degradation of the system. The latter point directly deals with the condition-based maintenance issue; in fact, monitoring the propulsion plant parameters over time could allow for better management (and timing) of maintenance. Although the developed ideas are far from ready to be used on the full-scale, the authors believe that the methodologies are promising enough to be developed further towards a full-scale application.

 Artículos similares

       
 
Jing Li, Jin Fu and Nan Zou    
The underwater channel is bilateral, heterogeneous, uncertain, and exhibits multipath transmission, sound line curvature, etc. These properties complicate the structure of the received pulse, causing great challenges in direct signal identification for r... ver más

 
Adelia Darlene Drego, Daniel Andersson and Ingo Staack    
Surveillance aircraft perform long-duration missions (>eight hours) that include detection and identification of objects on the ground, the water, or in the air. They have surveillance systems that require large amounts of cooling power (typically 10 s o... ver más
Revista: Aerospace

 
Shuailong Zhao, Xuefeng Tao and Zhi Li    
Continuous thrust spacecraft in circular orbits have had a great influence on the identification and cataloging of space targets. Gaussian-type orbital element variational equations are simplified and approximated. Ground-based radar observation datasets... ver más
Revista: Aerospace

 
Ruijuan Du and Taiyang Tao    
This paper focuses on the joint estimation of parameters and time delays for multi-input systems that contain unknown input delays and colored noise. A greedy pursuit hierarchical iteration algorithm is proposed, which can reduce the estimation cost. Fir... ver más
Revista: Algorithms

 
Jiangfeng Li, Jian Dang, Chaohao Xia, Rong Jia, Gaoming Wang, Peihang Li and Yunxiang Zhang    
To efficiently extract the model parameters of photovoltaic (PV) modules, this paper proposed an identification method based on the Dynamic Elite-Leader Multi-Verse Optimizer (DLMVO) algorithm. An adaptive strategy was used to control parameters based on... ver más
Revista: Applied Sciences