Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Performance Estimation of High-Level Dataflow Program on Heterogeneous Platforms by Dynamic Network Execution

Aurelien Bloch    
Simone Casale-Brunet and Marco Mattavelli    

Resumen

The performance of programs executed on heterogeneous parallel platforms largely depends on the design choices regarding how to partition the processing on the various different processing units. In other words, it depends on the assumptions and parameters that define the partitioning, mapping, scheduling, and allocation of data exchanges among the various processing elements of the platform executing the program. The advantage of programs written in languages using the dataflow model of computation (MoC) is that executing the program with different configurations and parameter settings does not require rewriting the application software for each configuration setting, but only requires generating a new synthesis of the execution code corresponding to different parameters. The synthesis stage of dataflow programs is usually supported by automatic code generation tools. Another competitive advantage of dataflow software methodologies is that they are well-suited to support designs on heterogeneous parallel systems as they are inherently free of memory access contention issues and naturally expose the available intrinsic parallelism. So as to fully exploit these advantages and to be able to efficiently search the configuration space to find the design points that better satisfy the desired design constraints, it is necessary to develop tools and associated methodologies capable of evaluating the performance of different configurations and to drive the search for good design configurations, according to the desired performance criteria. The number of possible design assumptions and associated parameter settings is usually so large (i.e., the dimensions and size of the design space) that intuition as well as trial and error are clearly unfeasible, inefficient approaches. This paper describes a method for the clock-accurate profiling of software applications developed using the dataflow programming paradigm such as the formal RVL-CAL language. The profiling can be applied when the application program has been compiled and executed on GPU/CPU heterogeneous hardware platforms utilizing two main methodologies, denoted as static and dynamic. This paper also describes how a method for the qualitative evaluation of the performance of such programs as a function of the supplied configuration parameters can be successfully applied to heterogeneous platforms. The technique was illustrated using two different application software examples and several design points.

 Artículos similares

       
 
Wanyuan Zhang, Weijia Yuan, Gongwu Sun, Tengjiao He, Junqi Qu and Chao Xu    
The advancement of unmanned platforms is driving the miniaturization and cost reduction of the multi-beam echosounder (MBES). In the process of MBES array calibration, the mutual coupling significantly impacts the performance of parameter estimation. We ... ver más

 
Maria Ganopoulou, Efstratios Kontopoulos, Konstantinos Fokianos, Dimitris Koparanis, Lefteris Angelis, Ioannis Kotsianidis and Theodoros Moysiadis    
Questionnaires on health-related quality of life (HRQoL) play a crucial role in managing patients by revealing insights into physical, psychological, lifestyle, and social factors affecting well-being. A methodological aspect that has not been adequately... ver más
Revista: Algorithms

 
Kamal Rsetam, Yusai Zheng, Zhenwei Cao and Zhihong Man    
In this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection ... ver más

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water

 
Taehoon Lee, Byungjin Lee and Sangkyung Sung    
This study proposes an enhanced integration algorithm that combines the magnetic field-based positioning system (MPS?Magnetic Pose Estimation System) with an inertial system with the advantage of an invariant filter structure. Specifically, to mitigate t... ver más
Revista: Aerospace