Resumen
The collaboration between renewable energy (RE) and an electric vehicles battery switch station (BSS) is a win-win strategy for both. In order to effectively coordinate and manage RE and BSS belonging to different investors, a new cooperative operation mode considering a multi-stakeholder scenario is proposed. By analyzing the relationship of cooperation and competition between them, their pursuit of maximizing their own interests is modeled as a Stackelberg game model. As the leader, the RE company determines the charge/discharge prices to guide the demand response of BSS. As the follower, the BSS optimizes its charge/discharge strategy according to the prices to maximize its own profits. The proposed model no longer requires that the RE company and BSS belong to a same interest subject, and there is no need for unified coordinated control between them. To solve the game equilibrium, a solution combining the backward-induction method and genetic algorithm is proposed by comparing and analyzing the characteristics of the strong and weak Stackelberg equilibriums. Finally, the effectiveness of the proposed model was validated by case studies. The simulation results show that both the RE company and the BSS have the motivation to participate in the game, and that a win-win outcome can be achieved automatically in the process of pursuing their own interest maximization in the game.