Resumen
Sufficient water is pivotal in maintaining the stability of boundaries in sandy river systems. However the current methodologies employed for computing the water demand for sediment transport in rivers frequently neglect this component. This research utilizes data spanning 1960 to 2020 from seven principal hydrological stations located in the lower Yellow River to establish the correlation between key factors pertaining to the sediment transport capacity of flow. A closed equation system was established based on the principles of river dynamics to solve unknown hydraulic parameters. Finding a suitable hydraulic geometric relationship equation as a supplementary equation is a key step in constructing a closed equation system. The findings indicate that sediment transport water demands are 71.79, 133.24, 226.89, 286.12, and 313.6 × 108 m3, respectively, when sediment inflow is at 1, 2, 4, 6, and 8 × 108 t, with a bankfull discharge of 4000 m3/s. As the sediment inflow diminishes and the unit water demand for sediment transport increases, the sediment transport efficiency of the lower Yellow River reduces. The outcomes of this research can serve as a foundation for the joint operation of the Yellow River?s main and branch reservoirs, as well as for designing water resource allocation schemes within the basin.