Resumen
As the technology for offshore wireless transmission and collaborative innovation in unmanned ships continues to mature, research has been gradually carried out in various countries on methods of compressing and transmitting perceptual video while driving ships remotely. High Efficiency Video Coding (H.265/HEVC) has played an extremely important role in the field of Unmanned Aerial Vehicle (UAV) and autopilot, and as one of the most advanced coding schemes, its performance in compressing visual sensor video is excellent. According to the characteristics of shipborne vision sensor video (SVSV), optimizing the coding aspects with high computational complexity is one of the important methods to improve the video compression performance. Therefore, an efficient video coding technique is proposed to improve the efficiency of SVSV compression. In order to optimize the compression performance of SVSV, an intra-frame coding delay optimization algorithm that works in the intra-frame predictive coding (PC) session by predicting the Coding Unit (CU) division structure in advance is proposed in combination with deep learning methods. The experimental results show that the total compression time of the algorithm is reduced by about 45.49% on average compared with the official testbed HM16.17 for efficient video coding, while the Bjøntegaard Delta Bit Rate (BD-BR) increased by an average of 1.92%, and the Peak Signal-to-Noise Ratio (BD-PSNR) decreased by an average of 0.14 dB.