Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  ChemEngineering  /  Vol: 7 Par: 5 (2023)  /  Artículo
ARTÍCULO
TITULO

Dynamic and Steady-State Simulation Study for the Stabilization of Natural Gas Condensate and CO2 Removal through Heating and Pressure Reduction

Mohsin Ehsan    
Usman Ali    
Farooq Sher    
Hafiz M. Abubakar and Muhammad Fazal Ul Basit    

Resumen

Stabilization of condensate is a highly energy-consuming process compared to other oil and gas processes. There is a need to reduce this energy consumption. Therefore, the present work aims to simulate the stabilization unit in terms of available energy and on-spec stabilized condensate products. Natural gas condensate liquids (NGL) need to be stabilized by eliminating lighter hydrocarbon gases and acid gases before being sent to the refinery. Stabilized NGL has the vapor pressure determined as a Reid vapor pressure of 7 psia, showing that light components did not evolve as a separate gas phase. Stabilization and CO2 removal was performed through the distillation method by heating and pressure reduction using steady state and dynamic simulation through Aspen HYSYS. Different process alterations around the exchanger and column have been studied based on the utilities available for the stabilization and CO2 removal process. Sensitivity studies, including the impact of CO2 concentration, the temperature at the inlet of the stabilizer flash separator, and the dynamic simulation for the PID controller, have been performed to analyze the impact on the process parameters, such as Reid vapor pressure (RVP) and CO2 of the rundown air cooler and heat duties of the exchangers. Actual plant data have been used for the validation of process simulation values for the accuracy of the condensate stabilization unit model. Based on the scenarios analyzed, it can be concluded that the nitrogen stripping method achieved 7 ppmv CO2 and 7 psia RVP in the condensate from the cooler outlet, while a variation of 29 bpd was observed for the stabilized condensate flowrate throughout all scenarios with data validation showing 0.24% discrepancy between Aspen Hysys data and actual plant data.

 Artículos similares

       
 
Jianfeng Zhu, Guochen Huang, Maoguang Xu, Ming Liu, Bo Diao and Po Li    
Combined with the development trend of high speed generators and the high voltage of DC microgrids in high-power series hybrid aero propulsion system, a set of hybrid systems with a power of 200 kW, voltage of 540 V, and speed of 21,000 r/min is establis... ver más
Revista: Aerospace

 
Kamal Rsetam, Yusai Zheng, Zhenwei Cao and Zhihong Man    
In this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection ... ver más

 
Jennifer Coston-Guarini, François Charles and Jean-Marc Guarini    
An outbreak species exhibits extreme, rapid population fluctuations that can be qualified as discrete events within a continuous dynamic. When outbreaks occur they may appear novel and disconcerting because the limiting factors of their dynamics are not ... ver más

 
Yury Solyaev    
The elastodynamic stress field near a crack tip propagating at a constant speed in isotropic quasi-brittle material was investigated, taking into account the strain gradient and inertia gradient effects. An asymptotic solution for a steady-state Mode-I c... ver más
Revista: Applied Sciences

 
Khalil Deghoum, Mohammed Taher Gherbi, Hakim S. Sultan, Adnan N. Jameel Al-Tamimi, Azher M. Abed, Oday Ibraheem Abdullah, Hamza Mechakra and Ali Boukhari    
In this article, the model of a 5 kW small wind turbine blade is developed and improved. Emphasis has been placed on improving the blade?s efficiency and aerodynamics and selecting the most optimal material for the wind blade. The QBlade software was use... ver más