Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Numerical Investigation on Hydrodynamic Characteristics of Immersed Buoyant Platform

Jinjiang Yao    
Xingwei Zhen    
Yi Huang and Wenhua Wang    

Resumen

The Next Generation Subsea Production System (NextGen SPS) is considered as a competitive alternative system used for offshore petroleum production in ultra-deep sea based on the artificial seabed technology. The Immersed Buoyant Platform (IBP), which is located at a constant depth below the free surface of the water to minimize wave loading, provides a buoyant stable platform for supporting the well completion equipment. Therefore, the hydrodynamic characteristics of IBP in the currents play an essential role in determining the global responses of NextGen SPS. In this paper, aiming at acquiring an optimum structural form of IBP, the hydrodynamic characteristics of the flow past the cylindrical IBP with different height-to-diameter ratios are systematically investigated by use of the large eddy simulation (LES) approach. The simulations with fifteen different height-to-diameter ratios (H/D" role="presentation" style="position: relative;">??/??H/D H / D ) are investigated. The Reynolds numbers are ranged from 0.94×106" role="presentation" style="position: relative;">0.94×1060.94×106 0.94 × 10 6 to 3.45×106" role="presentation" style="position: relative;">3.45×1063.45×106 3.45 × 10 6 . It can be verified that the separated fluid reattaches on the surface of the cylinder when the aspect ratio is between 0.1 and 0.4. Due to the specific shape ratio and obvious 3D effect of the cylindrical IBP, no significant vortex shedding has been clearly observed when the aspect ratio is between 0.1 and 0.4. In the case of 0.4≤H/D≤5.0" role="presentation" style="position: relative;">0.4=??/??=5.00.4=H/D=5.0 0.4 = H / D = 5.0 , a series of regular and alternating vortex street shedding appear behind the circular cylinder. The simulation results also show that the recirculation region length behind the cylindrical IBP can be significantly reduced with the decreasing aspect ratio. It can be concluded that the cylindrical IBP performs the best hydrodynamic characteristics when the aspect ratio is between 0.3 and 0.4. The research findings will be of great significance to providing valuable reference and foundation to determine the optimum form of underwater structures, such as the buoyancy cans of the hybrid riser system.

 Artículos similares

       
 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Muhammad Sulman, Simone Mancini and Rasul Niazmand Bilandi    
Incorporating steps into a hull reduces the wetted surface, promoting improved hydrodynamic lift and reduced resistance at high speeds, provided that the step is designed appropriately. Traditional hydrodynamics studies rely on scaled model testing in to... ver más

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Liyuan Wang, Pengfei Zhou, Jiayang Gu and Yapeng Li    
This study focuses on a large-scale cruise ship as the subject of research, with a particular emphasis on conditions not covered in the MSC.1/Circ.1533 guidelines. The investigation explores the impact of specific motion states of the cruise ship, includ... ver más

 
Shuang Ruan, Ming Zhang, Shaofei Yang, Xiaohang Hu and Hong Nie    
A dynamic model is established to investigate the shimmy instability of a landing gear system, considering the influence of nonlinear damping. The stability criterion is utilized to determine the critical speed at which the landing gear system becomes un... ver más
Revista: Aerospace