Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

Numerical Investigation of Single and Double Steps in Planing Hulls

Muhammad Sulman    
Simone Mancini and Rasul Niazmand Bilandi    

Resumen

Incorporating steps into a hull reduces the wetted surface, promoting improved hydrodynamic lift and reduced resistance at high speeds, provided that the step is designed appropriately. Traditional hydrodynamics studies rely on scaled model testing in towing tanks, but numerical tools offer a more efficient alternative. This study focused on investigating the hydrodynamic performance of stepped hulls by modifying the parent hull of the Naples Systematic Series (C1). The Computational Fluid Dynamics (CFD) code SIEMENS PLM STAR CCM+ version 2302 was used for simulations, including four different beam Froude numbers (FrB" role="presentation" style="position: relative;">??????FrB F r B = 1.13, 2.22, 2.56, and 2.96) and a total of 15 hull configurations with single and double steps. By employing a three-dimensional computational analysis of multiphase flow using Dynamic Fluid?Body Interaction (DFBI) and overset mesh, various performance parameters such as resistance coefficient, dimensionless wetted surface, sinkage, and dynamic trim were analyzed. The accuracy of the CFD results was confirmed through comparison with experimental data and grid uncertainty assessment. The study demonstrated that placing a single step near the transom decreased trim and increased resistance and wetted surface. Conversely, positioning a step in the forward section reduced the trim angle at lower step heights but increased trim at higher step heights in single-stepped hulls. The application of these findings contributes to the design optimization of stepped hulls for enhanced performance in high-speed maritime applications.

Palabras claves

 Artículos similares

       
 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Shuang Ruan, Ming Zhang, Shaofei Yang, Xiaohang Hu and Hong Nie    
A dynamic model is established to investigate the shimmy instability of a landing gear system, considering the influence of nonlinear damping. The stability criterion is utilized to determine the critical speed at which the landing gear system becomes un... ver más
Revista: Aerospace

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más

 
Liyuan Wang, Pengfei Zhou, Jiayang Gu and Yapeng Li    
This study focuses on a large-scale cruise ship as the subject of research, with a particular emphasis on conditions not covered in the MSC.1/Circ.1533 guidelines. The investigation explores the impact of specific motion states of the cruise ship, includ... ver más